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Lecture 1
1.1

Change is one of the most interesting and important things in mathematics. Formally, the way we
set this up is to consider a set X, and interpret a function

f : X → X

as a “transformation” of X. In plain English, if x is an element of the set X before the transfor-
mation, then f(x) ∈ X denotes how this element changes after the transformation. For example:

� Let X = {0, 1, . . . , n − 1} denote the set of vertices of a regular n-gon, and let f : X → X
denote some rotation or reflection that preserves the entire n-gon. However, f might change the
individual vertices, for example it might send the vertex x ∈ X to the vertex f(x) ∈ X.

� Imagine you have n locations indexed by the set X = {1, . . . , n}, and that you label each location
with a post-it note. A permutation is a function f : X → X which controls how the post-it
notes are moved from one location to another, but with no more or less than one post-it note per
location. Mathematically, the function f encodes the fact that we move the post-it from location
f(x) to location x, for every x ∈ X.

1.2

So what happens when we have two transformations

f : X → X and g : X → X

and we want to perform (or as mathematicians say, “apply”) them in succession? This is very easy:
applying the transformation g first and then f later is the same thing as directly applying the

composition f ◦ g : X → X given by (f ◦ g)(x) = f(g(x)), ∀x ∈ X (1)

In the first example on the previous page, this setup would mean that we apply

� two rotations, or

� two reflections, or

� a rotation and a reflection, or

� a reflection and a rotation

one after the other. If you draw a picture of this, then you will observe that the resulting transfor-
mation in the four cases above will be a rotation, rotation, reflection, reflection, respectively.
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1.3

What about the question of when a transformation can be “undone”, i.e. instead of going from
x to f(x) we go from f(x) to x, for all x ∈ X? Mathematically, this is modeled by the notion of
invertible transformation, namely a function f : X → X which has an inverse

f−1 : X → X (2)

whose defining property is that
f ◦ f−1 = f−1 ◦ f = IdX (3)

Above and henceforth, we write
IdX : X → X (4)

for the identity function which sends every x ∈ X to itself. Intuitively, the identity does not really
change anything, but we still consider it to be a “transformation”. It has the property that

f ◦ IdX = IdX ◦ f = f (5)

for any function f : X → X.

Lemma 1. If a function f : X → X has an inverse, then such an inverse is unique.

Proof. Let’s assume that the function f has two inverses g1 : X → X and g2 : X → X. Formula
(2) implies that

f(g1(x)) = g1(f(x)) = x (6)

f(g2(x)) = g2(f(x)) = x (7)

for all x ∈ X. If we apply formula (6) with x replaced by g2(x), then we infer that

g1(f(g2(x)) = g2(x)

for all x ∈ X. However, if we apply the function g1 to both sides of (7), we infer that

g1(f(g2(x)) = g1(x)

for all x ∈ X. Comparing the two equalities above implies g1(x) = g2(x) for all x ∈ X, i.e. the
“two” inverses g1 and g2 are actually one and the same function.

1.4

It might seem like the proof above relies on a bunch of mathematical tricks, but this is not actually
the case. In fact, Lemma 1 stems from the fact that a function f : X → X is invertible if and only
if it is bijective, which means that it is both

� injective: whenever x ̸= x′ are elements of X, we have f(x) ̸= f(x′), and

� surjective: for any y ∈ X, there exists some x ∈ X such that f(x) = y.

If a function is bijective, then for every y there exists a single x such that f(x) = y. Formulas (2)
then force us to set f−1(y) = x, which implies that the inverse is uniquely determined. This gives
an intuitive argument for the validity of Lemma 1.
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1.5

One of the great things about using mathematics to formalize transformations is that it makes it
easy to do computations with them. For instance, recall the example in the first bullet in Subsection
1.1: a rotation preserves a regular n-gon P if and only if we rotate counterclockwise by an angle
of 2πk

n radians around the center of P for some integer k. In formulas then, the corresponding
function on the set of vertices {0, 1, . . . , n− 1} takes the form

fk : X → X, fk(x) = x+ k mod n (8)

(recall that z mod n denotes the remainder of the integer z upon division by the natural number
n, and that this remainder is an element of the set {0, 1, . . . , n − 1}). While the integer k can be
arbitrary, only its residue class modulo n matters in formula (8), since fk = fk+n for all k ∈ Z.
Geometrically, this says that

2πk

n
radians is the same angle as

2π(k + n)

n
=

2πk

n
+ 2π radians

Meanwhile, the reflections which preserve the regular n-gon P correspond to the functions

gk : X → X, gk(x) = −x+ k mod n (9)

for some integer k. As before, only the residue class of k modulo n matters, because gk = gk+n for
all k ∈ Z. Thus, we have exactly n rotations and n reflections which preserve the regular n-gon,
and formulas (8) and (9) give us all the tools that we need to work with them. For instance, we
may explicitly calculate the composition of two reflections gk and gℓ by

gk ◦ gℓ(x) = gk(gℓ(x)) = gk(−x+ ℓ mod n) = x+ k − ℓ mod n

and the result is clearly a rotation (by 2π(k−ℓ)
n radians).

1.6

Let’s now use formulas to describe the example of permutations, i.e. the second bullet in Subsection
1.1. Permutations (for n = 6 in the examples below) will be represented as

f =

(
1 2 3 4 5 6
4 2 1 6 5 3

)
(10)

which means that we move the put the post-it note 4 on location 1, the post-it note 2 on location
2, the post-it note 1 on location 3 etc. The composition of permutations is calculated by stacking
permutations on top of each other. For instance, if we’re trying to calculate f ◦ g where f is given
by the formula (10) and g is given by formula

g =

(
1 2 3 4 5 6
6 1 3 5 2 4

)
then we calculate f ◦ g by putting g above (because it is applied first) and f below (because it is
applied second; note that we rearrange the columns of f so that its top row is compatible with the
bottom row of g) 1 2 3 4 5 6

6 1 3 5 2 4
3 4 1 5 2 6

 ⇒ f ◦ g =

(
1 2 3 4 5 6
3 4 1 5 2 6

)
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As for the inverse permutation f−1, it is calculated by switching the two rows of (10) and then
reordering the columns so as to have the numbers on the top row in increasing order:

f−1 =

(
1 2 3 4 5 6
3 2 6 1 5 4

)

The identity permutation is simply

(
1 2 3 4 5 6
1 2 3 4 5 6

)
.

1.7

The composition of transformations enjoys three important properties: the existence of the identity
function (4) satisfying property (5), the existence of inverses (2) satisfying property (3), as well as

f ◦ (g ◦ h) = (f ◦ g) ◦ h (11)

for all functions f, g, h : X → X. Indeed, both sides of formula (11) represent the function x 7→
f(g(h(x))), which implies that they are equal to each other. Property (11) is called associativity.
The features of compositions of functions listed above can be abstracted in the following notion.

Definition 1. A group (as you learned in Math 113) is a set G endowed with

� an element e ∈ G called the identity

� for any element g ∈ G, an element g−1 ∈ G called the inverse

� for any two elements g, h ∈ G, an element gh ∈ G called the product of g and h.

which are required to satisfy the following properties

ge = eg = g, ∀g ∈ G (12)

gg−1 = g−1g = e, ∀g ∈ G (13)

g(g′g′′) = (gg′)g′′, ∀g, g′, g′′ ∈ G (14)

Two important examples of groups (which correspond to the two bullets in Subsection 1.1, and
that you learned in Math 113) are the dihedral group

D2n =
{
rotations and reflections that preserve a regular n-gon

}
(15)

and the symmetric group

Sn =
{
permutations, i.e. bijections {1, . . . , n} → {1, . . . , n}

}
(16)

In both cases, the identity is the identity function, the inverse is given by inverse functions, and
the product of elements is given by composition of functions. Recall that |D2n| = 2n (there are
exactly n rotations and n reflections that preserve a regular n-gon) while |Sn| = n!. Both Dn and
Sn are finite groups, in that they have finitely many elements.
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1.8

Formulas (12), (13), (14) are not just coincidentally similar to (4), (2), (11), but the former are
modeled after the latter. In other words, groups are simply the abstract mathematical structures
which describe transformations of various sets X. This connection is made even more concrete by
the following notion, which is central to many fields of mathematics (such as representation theory).

Definition 2. An action of a group G on a set X is an assignment

∀g ∈ G ⇝ a bijection Φg : X → X (17)

which respects

� the identity, in the sense that
Φe = IdX (18)

� the inverse, in the sense that

Φg−1 = (Φg)
−1 , ∀g ∈ G (19)

� the product, in the sense that

Φgg′ = Φg ◦ Φg′ , ∀g, g′ ∈ G (20)

We will indicate an action, i.e. the assignment (17), by the symbol

G↷ X (21)

Although rather imprecise, we will henceforth abbreviate the bijections Φg by the symbol

Φg(x) = g · x

for all g ∈ G, x ∈ X. With this in mind, formula (18) takes the form e · x = x, while (20) reads

(gg′) · x = g · (g′ · x) (22)

for all g, g′ ∈ G and all x ∈ X.

Remark. Note that properties (18) and (19) are actually superfluous, i.e. they follow from (20)
and the fact that all the Φg are bijections. Indeed, just apply (20) for g′ = e and you will obtain

Φg = Φge = Φg ◦ Φe

Composing with (Φg)
−1 implies precisely (18). Then if we invoke (22) for g′ = g−1 we obtain

IdX = Φe = Φgg−1 = Φg ◦ Φg−1

which implies (19).
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1.9

By their very construction (but you are encouraged to check this rigorously) the examples in the
two bullets in Subsection 1.1 are equivalent to actions

D2n ↷
{
vertices of a regular n-gon

}
(23)

and
Sn ↷ {1, . . . , n} (24)

respectively. In fact, the latter example can be generalized as follows.

Definition 3. For any set X, we let

SX =
{
bijections X → X

}
made into a group using the composition of functions. Then there is an action

SX ↷ X

simply by having every bijection σ ∈ SX act on X by σ itself.

Besides the examples of actions above, there are two special actions of a group on itself, as follows.

Definition 4. For every group G, its left action G↷ G is the assignment

h · g = hg, ∀g, h ∈ G (25)

Definition 5. For every group G, its adjoint action G↷ G is the assignment

h · g = hgh−1, ∀g, h ∈ G (26)

Proposition 1. The assignments (25) and (26) are well-defined actions.

Proof. As we showed at the end of Subsection 1.8, it suffices to check that each Φg is a bijection,
and that formula (22) holds. We will do so for the adjoint action, and leave the analogous case of
the left action as an exercise to you. To check that g 7→ hgh−1 is a bijective function of g for every
fixed h ∈ G, note that

hgh−1 = hg′h−1 ⇒ hg = hg′ ⇒ g = g′

thus proving injectivity, while

h(h−1gh)h−1 = (hh−1)g(hh−1) = ege = g, ∀g ∈ G

thus proving surjectivity. Finally, to show (22), we note that

(hh′) · g = hh′gh′
−1
h−1 = h(h′gh′

−1
)h−1 = h · (h′ · g)

for all g, h, h′ ∈ G, as required. Note that all these checks made heavy use of associativity.
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1.10

Let us now explore how the notion of action interacts with the notion of group homomorphism,
which you learned in Math 113.

Definition 6. Let G and G′ be two groups, each with their own notions of identity element, inverse
and product. A function

f : G→ G′

is called a homomorphism if it preserves

� the identity elements, in the sense that

f(e) = e′ (27)

where e is the unit in G and e′ is the unit in G′

� the inverses, in the sense that
f(g−1) = (f(g))−1 (28)

with the LHS involving the inverse in G and the RHS involving the inverse in G′.

� the products, in the sense that
f(gh) = f(g)f(h) (29)

with the LHS involving the product in G and the RHS involving the product in G′.

As before, some of properties (27), (28) and (29) are superfluous: either the first or the second of
them follow from the other two. Try proving this for practice.

1.11

A homomorphism which is also bijective function is called an isomorphism. If there exists an
isomorphism between two groups G and G′, we will denote this as

G ∼= G′ (30)

and say that G and G′ are isomorphic.

Lemma 2. If f : G→ G′ is an isomorphism between two groups G and G′, then its inverse

f−1 : G′ → G

is also an isomorphism.

Proof. The inverse of a bijection is a bijection, so it remains to show that the inverse is also a
homomorphism. As we explained at the end of Subsection 1.10, it suffices to check (27) (which is
obvious, since the fact that f(e) = e′ implies f−1(e′) = e) and (29). Indeed, (29) follows from

gh = (f−1 ◦ f)(gh) = f−1(f(gh)) = f−1(f(g)f(h))

for all g, h ∈ G. If we replace g and h by f−1(g) and f−1(h) in the relation above, we obtain

f−1(g)f−1(h) = f−1(f(f−1(g))f(f−1(h))) = f−1(gh)

which is exactly what we needed to prove.
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1.12

The formalism of groups, actions and homomorphisms comes together within the following result.

Proposition 2. To give an action of a group G on a set X is the same as to give a homomorphism

G→ SX (31)

(recall the group SX in Definition 3).

Proof. It is clear that the assignment g ⇝ Φg corresponds to a function (31). To show that the
former assignment being an action is equivalent to the latter function being a homomorphism boils
down to showing that properties (18), (19), (22) correspond to (27), (28), (29). This is a tautology,
i.e. a mathematical statement which is obvious once you unpack it (though unpacking it is a useful
exercise; please try your hand at it and ask one of your instructors if you’re stuck).
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Lecture 2
2.1

Let G be a group. Recall from Math 113 that a subset H ⊆ G is called a subgroup, denoted by

H ≤ G (32)

if H is closed under

� the identity, in the sense that e ∈ H

� the inverse, in the sense that g ∈ H implies g−1 ∈ H

� the product, in the sense that g, g′ ∈ H implies gg′ ∈ H

If the conditions above hold, then H is a group in its own right, and the inclusion function

ι : H ↪→ G

is a homomorphism. In general, for any homomorphism

f : G→ G′

the image of f is a subgroup of G′. If moreover f is injective, then Im f ∼= G .

2.2

We will now see how the language of actions allows us to describe general features of groups. The
following theorem is due to Cayley.

Theorem 1. Any group G is a permutation group, i.e. a subgroup of SX for some set X.

Thus, any group can be realized as “living” inside some group of permutations (if G is finite, then
we will see that the set X can be chosen to be finite, and so every finite group is a subgroup of the
symmetric group Sn for some n ∈ N). To this end, let us consider any action G ↷ X and recall
the homomorphism (31). The following is an easy result, which you proved in Math 113.

Lemma 3. A homomorphism f : G→ G′ is injective if and only if its kernel

Ker f =
{
g ∈ G s.t. f(g) = e′

}
is the trivial subgroup {e} ≤ G.

With the Lemma above in mind, we see that (31) is injective if and only if its kernel is trivial.
However, in the context of a group action, this kernel can be explicitly described as{

g ∈ G
∣∣∣g · x = x,∀x ∈ X

}
and it is called the kernel of the action. In other words, the kernel of the action consists of all
those elements of G which act on X by the identity transformation. Thus, to prove Theorem 1,
it suffices to find an action of G whose kernel is just the trivial subgroup, i.e. only the identity
element of G acts on X by the identity transformation (such an action is called faithful). To this
end, we simply choose the left action of G on X = G from Definition 4: any element g ̸= e of G
acts on G by sending e to g, and thus cannot act by the identity transformation.
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2.3

Any action G↷ X induces an equivalence relation on X via

x ∼ y ⇔ ∃g ∈ G s.t. g · x = y (33)

Properties (18), (19) and (20) precisely ensure that the above equivalence relation is reflexive,
symmetric and transitive, respectively (try and prove this yourself, it’s a great exercise).

Definition 7. An equivalence class with respect to the relation (33) is called an orbit of the action
G↷ X. It can be written as

G · x =
{
g · x

∣∣∣g ∈ G} (34)

and it will be called the “orbit of x” (although any other y ∼ x has the same orbit as x).

An action is called transitive if all elements of X are in one and the same orbit.

Definition 8. Given an action G↷ X and any element x ∈ X, its stabilizer is defined as

StabG(x) =
{
g ∈ G s.t. g · x = x

}
(35)

Prove for yourself that the stabilizer is always a subgroup of G.

The kernel of a group action, which we have already encountered, is by definition the intersection of
the stabilizers of all elements x ∈ X. An action is called free if all stabilizers are equal to {e}. For
instance, the action (23) is transitive, but it is not free (as there exist vertices which are preserved
by reflections). However, the action of the subgroup of rotations in D2n on the vertices is free.

2.4

As with any equivalence relation, X can be partitioned into the disjoint union of the orbits of a
group action G↷ X. However, we can say more when G is finite.

Proposition 3. If G↷ X is an action of a finite group G on a set X, then we have

|G · x| = |G|
|StabG(x)|

(36)

for every x ∈ X.

The result above is called the orbit-stabilizer theorem. When both G and X are finite, the fact
that X is the disjoint union of its orbits means that (36) implies the following equation

|X| =
∑

orbits G·x
|G · x| =

∑
orbits G·x

|G|
|StabG(x)|

(37)

(while the set StabG(x) might change when modifying x within a given orbit, its cardinality does
not change; try to prove the previous claim, although it implicitly follows from the proof below).
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Proof. of Proposition 3: recall the description of orbits from (34). For fixed x ∈ X, the function

G→ G · x, g 7→ g · x (38)

is surjective. Let us compute how many elements are in the preimage of any element g · x of the
function (38). In other words, we seek to count how many g′ ∈ G have the property that

g′ · x = g · x ⇔ g−1g′ · x = x ⇔ g−1g′ ∈ StabG(x) ⇔ g′ ∈
{
gh
∣∣∣h ∈ StabG(x)

}
Since the elements gh (as h varies) are all distinct (prove this), there are |StabG(x)| elements in
the preimage of every element with respect to the function (38). This immediately proves (36).

2.5

Let us continue working in the context of an action of a group G on a set X. While the stabilizer
(35) describes the set of elements of G that fix a certain element x ∈ X, there exists the “mirror”
notion of the set of elements of X that are fixed by any given g ∈ G

Xg =
{
x ∈ X

∣∣∣g · x = x
}

(39)

In general, all we can say is that Xg is a subset of X. But when X is finite, we have the following
formula that is often called “Burnside’s Lemma”, although it goes back to Cauchy and Frobenius.
It is a very useful count of the number of orbits in a group action

Lemma 4. If G is a finite group acting on a finite set X, then∣∣∣orbits of G↷ X
∣∣∣ =∑

g∈G

|Xg|
|G|

(40)

Proof. The Lemma is a simple combinatorial exercise. Specifically, let us rewrite (40) as

|G| · |orbits of G↷ X| =
∑
g∈G
|Xg| (41)

The right-hand side counts the number of pairs

(g, x) ∈ G×X s.t. g · x = x

If we interpret this number as a sum over x ∈ X, we conclude that the right-hand side of (41) is∑
x∈X
|StabG(x)|

Using Proposition 3, we see that the number above is∑
x∈X

|G|
|G · x|
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We may replace the sum over x ∈ X as a sum over the orbits; however, every orbit G · x appears a
number of |G · x| times in the above sum, so we conclude that the number above is∑

orbits G·x
|G|

which is precisely the left-hand side of (41).

2.6

When H is a subgroup of a group G, the orbits of the left action

H ↷ G, h · g = hg

are called right cosets. The slightly unusual terminology is due to the fact that the orbits in
question are explicitly given by the formula

Hg =
{
hg
∣∣∣h ∈ H} (42)

in which g is on the right. The mirror image of this notion stems from the so-called right action

H ↷ G, h · g = gh−1

(please check that the formula above satisfies all the properties of an action, much as we did for
the left action of Definition 4) whose orbits are called left cosets

gH =
{
gh
∣∣∣h ∈ H} (43)

Indeed, as h runs over H, the set of elements of the form gh−1 matches the set of elements of the
form gh, due to the subgroup H ≤ G being closed under taking inverses. Both the left and right
actions are free, in the sense that

StabH(g) = {e}, because hg = g or gh−1 = g if and only if h = e (44)

for all g ∈ G.

Definition 9. Let G/H (respectively H\G ) denote the set of left (respectively right) cosets of

G with respect to a subgroup H.

Let us now assume that G is finite, and H ≤ G is an arbitrary subgroup. Because of (44),
Proposition 3 implies that every left or right coset has exactly |H| elements. Since G is partitioned
into either left or right cosets, we conclude that the number of such cosets is exactly

|G/H| = |H\G| = |G|
|H|

(45)

One often denotes the number above by [G : H] and calls it the index of the subgroup H of G.
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2.7

Recall from Math 113 that the order of a finite group is its cardinality, i.e. its number of elements.
With this in mind, (45) implies a foundational result in the theory of finite groups due to Lagrange

the order of a group G is a multiple of the orders of any of its subgroups (46)

In particular, we can take any g ∈ G and consider the subgroup of G generated by g, i.e.

H := {. . . , g−2, g−1, e, g, g2, . . . } ⊆ G

If we assume that G is finite, then the subgroup H above must also be finite. In particular, this
implies that there exists some integers a < b such ga = gb, so gb−a = e. This implies that the order
of g, namely

|g| = min
{
d > 0 s.t. gd = e

}
(47)

is well-defined. If g has order d, then we have an isomorphism

Z/dZ ∼= H, (k mod d) 7→ gk

where we recall that Z/dZ is a group with respect to addition. In the particular case at hand,
Lagrange’s theorem (46) implies that the order of any element of a group divides the order of the
whole group. This imposes significant restrictions on finite groups and their elements.

2.8

Now that we have studied the orbits of the left and right actions (of a subgroup on a group), let’s
consider the adjoint action of a group G on itself

G↷ G, h · g = hgh−1, ∀g, h ∈ G

Elements in the same orbit are called conjugate, and the orbits themselves are called conjugacy
classes (you learned about them in Math 113). Specifically, the conjugacy class of g ∈ G is the set{

hgh−1
∣∣∣h ∈ G} (48)

Meanwhile, the stabilizer of g with respect to the adjoint action is called its centralizer

CG(g) =
{
h ∈ G s.t. hg = gh

}
(49)

Proposition 4. If g and g′ are conjugate in a group G, then their centralizers are isomorphic.

Proof. If g′ = hgh−1, then the assignment x 7→ h−1xh gives an isomorphism CG(g
′)→ CG(g).

Thus, we will often refer to the centralizer of a conjugacy class g̃ ⊆ G, denoted by CG(g̃), as the
isomorphism class of the centralizer of any element g ∈ g̃.
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2.9

When the group G is finite, formula (37) for the adjoint action implies the formula

|G| =
∑

conjugacy classes g̃

|g̃| (50)

called the class equation of G. However, Proposition 3 for the adjoint action implies that

|g̃| = |G|
|StabG(g̃)|

(51)

Keeping in mind the fact that the stabilizers are none other than the centralizers, we have

|g̃| = |G|
|CG(g̃)|

(52)

Note that in the formulas above, we are referring to “the stabilizer/centralizer of a conjugacy class”.
This is because any two elements in a conjugacy class g̃ have isomorphic centralizers (according
to Proposition 4), and so we may unambiguously define StabG(g̃) = CG(g̃) up to isomorphism. In
particular, the order of this stabilizer/centralizer is well-defined, no matter what element g ∈ g̃ we
choose to define it. Putting the formulas above together, we have the following equivalent version
of (50), which we will also refer to as the class equation of G

1 =
∑

conjugacy classes g̃

1

|CG(g̃)|
(53)

2.10

Let us now apply all the notions above for the two main examples of groups we have studied in
Subsection 1.1. Recall the dihedral group D2n consisting of rotations and reflections that preserve
a regular n-gon. The subset of n rotations is actually a subgroup of D2n (try to argue why: you
need to convince yourself that the identity is a rotation, that the inverse of a rotation is a rotation,
and that the composition of rotations is a rotation), and in fact it is not hard to convince yourself
that this subgroup is isomorphic to Z/nZ. Thus, we have an injective homomorphism

Z/nZ ↪→ D2n, (k mod n) 7→
(
rotation by

2πk

n
radians

)
Let us work out the conjugacy classes of the dihedral group in a small example, let’s say

D6 =
{
e, σ, σ2︸ ︷︷ ︸
rotations

, τ, τσ, τσ2︸ ︷︷ ︸
reflections

}
(recall from Math 113 that we have the formulas τ2 = σ3 = e and στ = τσ−1). The identity
element is always alone in its conjugacy class

{e}

and its centralizer is always the whole group, which in this case has order 6. Meanwhile, the two
non-trivial rotations

{σ, σ2}
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form their own conjugacy class, because σ2 = σ−1 = τ−1στ . The centralizer of one of these
rotations is the subgroup of rotations, which has order 3 (check this using the symbols σ and τ).
Finally, the reflections

{τ, τσ, τσ2}

are all conjugate to each other, because τσ = στσ−1 and τσ2 = σ−1τσ. The centralizer of each
reflection is simply the order 2 subgroup consisting of the identity and the reflection itself (check
this using the symbols σ and τ). With this in mind, the class equation (53) reads

1 =
1

6
+

1

3
+

1

2
(54)

which is definitely a true statement.

2.11

Let us now consider the symmetric group Sn. As you learned in Math 113, every permutation
σ ∈ Sn can be written as a disjoint product of cycles, for instance(

1 2 3 4 5 6 7 8
4 7 8 6 5 1 2 3

)
= (1 4 6)(2 7)(3 8)(5)

Thus, to the permutation σ we may associate its cycle type, which is the set of lengths of its
cycles in non-decreasing order. In the example above, the cycle type is 3 ≥ 2 ≥ 2 ≥ 1, because
there is a single cycle of length 3, two cycles of length 2, and one cycle of length 1. In general, the
cycle type of a permutation σ ∈ Sn will be a partition of n, i.e. a collection of positive integers

λ = (λ1 ≥ λ2 ≥ · · · ≥ λk)

with total sum |λ| = λ1 + λ2 + · · ·+ λk equal to n.

Proposition 5. Two elements of Sn are conjugate if and only if they have the same cycle type.

Proof. This exercise is easier than it looks, and it is built on the fact that if we regard σ, τ ∈ Sn as
bijections {1, . . . , n} → {1, . . . , n}, then

σ =

(
1 . . . n

σ(1) . . . σ(n)

)
=⇒ τστ−1 =

(
. . . τ(i) . . .
. . . τ(σ(i)) . . .

)
Thus, there is a one-to-one correspondence between cycles i1 → i2 → · · · → ik → i1 of the
permutation σ and cycles τ(i1) → τ(i2) → · · · → τ(ik) → τ(i1) of the permutation τστ−1. This
immediately shows that any two conjugate permutations have the same cycle type, but it also shows
the converse: any permutation σ with cycle type λ can be written as τσλτ

−1, where

σλ = (1 2 . . . λ1)(λ1 + 1 λ1 + 2 . . . λ1 + λ2)(λ1 + λ2 + 1 λ1 + λ2 + 2 . . . λ1 + λ2 + λ3) . . . (55)

and τ : {1, . . . , n} → {1, . . . , n} is the function which sends the sequence (λ1+· · ·+λi−1+1, . . . , λ1+
· · ·+ λi) to one of the cycles of σ of length λi, for all i.
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Let us now work out the class equation for symmetric groups. To this end, we need to figure out
the order of the centralizer of a given element in each conjugacy class. It suffices to do so for the
representative (55). We have τ ∈ CSn(σλ) if and only if

τσλτ
−1 = σλ

As we have seen in the proof of Proposition 5, this means that τ has to permute the cycles of σλ
of length i among themselves. If we let #i

λ denote the number of such cycles, this amounts to #i
λ!

choices. However, once we have fixed the fact that τ takes one cycle γ of length i to another cycle
γ′ of length i, we have the added freedom of choosing which particular entry of γ′ will be the image
of the first entry of the cycle γ. This amounts to i choices for every cycle of length i. Thus, we
conclude that

|CSn(σλ)| =
∏
i≥1

i#
i
λ#i

λ!

Do not worry about the fact that the product seems to be infinite. For i large enough, we have
#i
λ = 0, and i00! = 1. With this in mind, the class equation (53) reads

1 =
∑

λ a partition of n

1∏
i≥1 i

#i
λ#i

λ!
(56)

For example, when n = 4, the formula above reads 1 = 1
24 + 1

4 + 1
8 + 1

3 + 1
4 .
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Lecture 3
3.1

Let us consider a group and a subgroup H ≤ G. In general, the left and right cosets of G with
respect to H are different. But in the event that they are equal, i.e.

gH = Hg , ∀g ∈ G (57)

then you learned in Math 113 that we call H a normal subgroup of G, and denote this as H ⊴ G .

Lemma 5. If f : G→ G′ is any homomorphism, the kernel of f is a normal subgroup.

Proof. Property (57) can be rewritten as

gHg−1 = H

for all g ∈ G. When H = Ker f , then any element h ∈ H is characterized by the property that
f(h) = e′. However, for any element g ∈ G, this is equivalent to

f(ghg−1) = f(g)e′f(g−1) = f(g)f(g)−1 = e′

which is equivalent to ghg−1 ∈ Ker f = H.

Important properties of normal subgroups (which you should check) are the facts that

� if H1 and H2 are normal in G, then H1 ∩H2 is normal in G

� if H is normal in G, then H is normal in any subgroup of G which contains H

3.2

You may recall from Math 113 that if H ⊴ G is a normal subgroup, then the set of (either left or
right, since they are equal by virtue of normality) cosets

G/H

inherits a group structure from G. This group structure ensures that the so-called projection

π : G→ G/H, g 7→ [g]

is a homomorphism. The kernel of the homomorphism above is clearly H. This leads to an
important result known as the first isomorphism theorem, which you learned in Math 113.

Theorem 2. For any homomorphism f : G→ G′, we have an isomorphism

G/Ker f ∼= Im f (58)

induced by [g] 7→ f(g), for all g ∈ G.
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Example 1. Take G = Z (made into a group with respect to addition, often called the infinite
cyclic group) and H = nZ for some natural number n. The latter is a normal subgroup because Z
is abelian (more on that later) and all subgroups of an abelian group are normal. Then we have

G/H = Z/nZ

to be the group of residues modulo n (often called the cyclic group of order n). More generally,
you can choose two natural numbers m and n and consider the homomorphism

f : Z→ Z/nZ, f(k) = (mk mod n), ∀k ∈ Z

In this case, Ker f = n
dZ where d = gcd(m,n), so the first isomorphism theorem (58) implies that

the subgroup of Z/nZ consisting of elements which are multiples of m is isomorphic to Z/ndZ. In
particular, if d = 1, any element of Z/nZ is a multiple of m, which implies that there exists a ∈ Z
such that am ≡ 1 modulo n. In turn, this implies that there exists b ∈ Z such that

am+ bn = 1 (59)

as integers, a well-known property of coprime numbers m and n.

3.3

Quotients have an important property with respect to group actions. Assume we have an action

G↷ X (60)

and that a certain normal subgroup H ⊴ G acts on X trivially, i.e.

h · x = x, ∀h ∈ H,x ∈ X (61)

(in other words, h is contained in the kernel of the action). Then the action (60) induces an action

G/H ↷ X (62)

given by the formula
[g] · x = g · x, ∀g ∈ G, x ∈ X (63)

Indeed, to ensure that this action is well-defined, all that one needs to show is that formula (63) is
unchanged if we replace g by gh for arbitrary h ∈ H. However, this is an immediate consequence
of the fact that (gh) · x = g · (h · x) and the assumption (61).

Remark. If we let H be the kernel of the action (60) (which is normal, because it can be construed
as the kernel of the homomorphism (31)), then the induced action (62) is faithful. Prove this.
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3.4

With the definitions above in mind, we now generalize the notion of centralizer from the previous
lecture. The following notions have already been encountered in Math 113.

Definition 10. For any subset X of a group G, define its centralizer as

CG(X) =
{
g ∈ G

∣∣∣gx = xg, ∀x ∈ X
}

(64)

The centralizer of X = G is called the center of the group G, and is denoted by

Z(G) =
{
g ∈ G

∣∣∣gh = hg,∀h ∈ G
}

(65)

Definition 11. For any subset X of a group G, define its normalizer as

NG(X) =
{
g ∈ G

∣∣∣gX = Xg
}

(66)

It is obvious that CG(X) ≤ NG(X) for any set X ⊆ G, because the property gx = xg,∀x ∈ X is
stronger than gX = Xg. Moreover, the following stronger result is true.

Proposition 6. For any subset X ⊂ G, its centralizer is a normal subgroup of its normalizer

CG(X) ⊴ NG(X) (67)

Instead of proving Proposition 6 directly, we will argue for it using the language of group actions.
For any subset X of a group G, we have an action

NG(X) ↷ X, g · x = gxg−1

The kernel of this action is, by definition, the centralizer subgroup CG(X). Since the kernel of any
group action is normal, this implies Proposition 6. Moreover, according to the general principle in
Subsection 3.3, we obtain a faithful action

NG(X)/CG(X) ↷ X (68)

3.5

We henceforth specialize to the case when X is a subgroup of G.

Definition 12. An automorphism of a group K is an isomorphism K → K, and we write

Aut(K) (69)

for the group of automorphisms of K, with respect to composition.
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Definition 13. We say that a group L acts on a group K by automorphisms, still denoted by

L↷ K

if the bijections Φℓ(k) = ℓ · k are homomorphisms for all ℓ ∈ L.

Lemma 6. If H is a subgroup of G, then the action

NG(H)/CG(H) ↷ H (70)

of (68) is by automorphisms.

Proof. This is an immediate consequence of the formula

ghh′g−1 = (ghg−1)(gh′g−1)

for all h, h′ ∈ H, g ∈ G.

With this in mind, formula (70) gives us an inclusion

NG(H)/CG(H) ↪→ Aut(H) (71)

for any subgroup H ≤ G. The fact (71) is often called the normalizer/centralizer theorem.

3.6

Let us now consider two subgroups H and K of a group G. We may form the subsets

HK =
{
hk
∣∣∣h ∈ H, k ∈ K}

and
KH =

{
kh
∣∣∣h ∈ H, k ∈ K}

of G, which in general will be different. The following is a rather easy result, which we leave as an
exercise to you. You may also remember it from Math 113.

Proposition 7. Let H and K be subgroups of a group G.

� We have HK = KH if and only if HK is a subgroup of G.

� If H and K are normal subgroups of G, then HK is a normal subgroup of G.

For instance, the condition HK = KH in Proposition 7 holds if

K ≤ NG(H) (72)

because then we have Hk = kH for all k ∈ K. In turn, a significant source of examples for (72)
is when H ⊴ G, because in the latter case NG(H) = G. Formula (72) is also the setting of the
so-called second isomorphism theorem, which you also learned in Math 113.

Theorem 3. If K and H are subgroups of G such that K ≤ NG(H), then

K/K ∩H ∼= HK/H (73)

(the facts that K ∩H is normal in K and H is normal in HK is part of the Theorem).
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3.7

The following result is often called the correspondence theorem. Some people call it the lattice
theorem, while for others it’s an amalgamation of the third and fourth isomorphism theorems.

Theorem 4. For any group and normal subgroup H ⊴ G, there is a one-to-one correspondence{
subgroups H ≤ K ≤ G

}
↔
{
subgroups K̄ ≤ Ḡ

}
(74)

where Ḡ = G/H with standard projection π : G→ Ḡ. The correspondence (74) is given by

K̄ = π(K) and K = π−1(K̄) (75)

and it enjoys the following properties:

1. we have K ≤ K ′ if and only if K̄ ≤ K̄ ′, and in this case we have a bijection

K ′/K ↔ K̄ ′/K̄

2. we have K ⊴ K ′ if and only if K̄ ⊴ K̄ ′, and in this case we have an isomorphism

K ′/K ∼= K̄ ′/K̄ (76)

In particular, K is normal if and only if K̄ is normal.

Proof. We leave it to you to show that the assignments (75) are mutually inverse. The fact that K
being a subgroup is equivalent to K̄ being a subgroup is a consequence of the following.

Claim 1. If f : G→ G′ is a homomorphism, then for any subgroups H ≤ G and H ′ ≤ G′, we have

f(H) ≤ G′ and f−1(H ′) ≤ G

We leave Claim 1 as an exercise. Property 1 is a trivial statement, with the bijection given by

[g mod K] 7→
[
[g mod H] mod K/H

]
, ∀g ∈ K ′ (77)

Property 2 follows from

K ⊴ K ′ ⇔ Kg = gK, ∀g ∈ K ′ ⇔ K̄ḡ = ḡK̄, ∀ḡ ∈ K̄ ′ ⇔ K̄ ⊴ K̄ ′

where the middle equivalence is none other than the correspondence (74). If K is normal in K ′,
then the bijection (77) is easily seen to be a homomorphism, thus yielding the isomorphism (76).
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Lecture 4
4.1

We will now take the notion of subgroups and quotient groups one step further.

Definition 14. A short exact sequence (of groups)

1→ K
f−→ G

g−→ L→ 1 (78)

is the datum of two homomorphisms f and g as above, where f is injective, g is surjective, and

Im f = Ker g (79)

The “1” on the left and on the right of the sequence (78) represent the trivial group.

An immediate consequence of the definition is that f induces an isomorphism between K and a nor-
mal subgroup H ⊴ G, while the first isomorphism theorem implies that g induces an isomorphism
between L and the quotient group G/H. Because of this, if there exists a short exact sequence
(78), we will call G an extension of L by K.

Example 2. The quintessential short exact sequence is

1→ Z/mZ f−→ Z/mnZ g−→ Z/nZ→ 1 (80)

for any m,n ∈ N, where f is multiplication by n and g is reduction mod n.

4.2

For any groups K and L, recall from Math 113 their direct product

K × L

which is made into a group via the operation (k, ℓ)(k′, ℓ′) = (kk′, ℓℓ′) (try for yourself to guess the
identity and inverse, and to check all the group axioms). Then we have a short exact sequence

1→ K
f−→ K × L g−→ L→ 1 (81)

where f(k) = (k, e) and g(k, ℓ) = ℓ, for all k ∈ K and ℓ ∈ L. You can check that the maps f and
g are homomorphisms, and that (79) is satisfied. However, short exact sequences also account for
the semidirect products of groups that you learned about in Math 113.

Definition 15. If a group L acts on a group K by automorphisms (with notation as in Definition
13), then the corresponding semidirect product

K ⋊ L =
{
(k, ℓ)

∣∣∣k ∈ K, ℓ ∈ L} (82)

is made into a group with identity element (e, e) via

(k, ℓ)(k′, ℓ′) = (kΦℓ(k
′), ℓℓ′)

Direct products are the particular case of semidirect products for Φℓ = IdK , for all ℓ ∈ L.
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Proposition 8. Given a semidirect product (82), we have a short exact sequence

1→ K
f−→ K ⋊ L

g−→ L→ 1 (83)

where f(k) = (k, e) and g(k, ℓ) = ℓ, for all k ∈ K and ℓ ∈ L.

Proof. It is immediate to see that f is injective, g is surjective, and that Im f = Ker g (in fact,
the proof of these statements is equivalent to the case of the direct product, which we have already
treated). The only thing one needs to show is that f and g are homomorphisms. Let us show that
they respect the product. For f , this is a consequence of the fact that

(k, e)(k′, e) = (kΦe(k
′), ee) = (kk′, e), ∀k, k′ ∈ K

while for g, this is a consequence of the fact that

(k, ℓ)(k′, ℓ′) = (some element of K, ℓℓ′), ∀k, k′ ∈ K, ℓ, ℓ′ ∈ L

4.3

We will now show that quite a lot of short exact sequences are of the form (82), although to do so,
we must first formulate what it means for two short exact sequences to be “the same”.

Definition 16. Two short exact sequences

1→ K
f−→ G

g−→ L→ 1

and

1→ K
f ′−→ G′ g′−→ L→ 1

are called equivalent if there exists a homomorphism s : G → G′ which makes the squares in the
following diagram commute

1 −−−−→ K
f−−−−→ G

g−−−−→ L −−−−→ 1

IdK

y s

y IdL

y
1 −−−−→ K

f ′−−−−→ G′ g′−−−−→ L −−−−→ 1

(84)

Note that equivalence of short exact sequences is an equivalence relation, i.e. it is reflexive, sym-
metric and transitive (check these facts, please).

Lemma 7. If two short exact sequences are equivalent, then the homomorphism s in Definition 16
must be an isomorphism.
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Proof. We will use the notation in Definition 16 and the commutativity of diagram (84). Assume
that s(x) = e for some x ∈ G. Then g′(s(x)) = e, so by the commutativity of the right-most square
we must have g(x) = e. However, this implies that there exists y ∈ K such that x = f(y). Then we
have e = s(x) = s(f(y)), which by commutativity of the left-most square implies that f ′(y) = e.
Since f ′ is injective, this implies y = e, therefore x = e. This establishes the injectivity of s.

Consider any x′ ∈ G′. Because g is surjective, we can choose x ∈ G such that g(x) = g′(x′).
However, by the commutativity of the right-most square in (84), we have g = g′ ◦ s. Thus, we have

g′(s(x)) = g′(x′) ⇒ g′(s(x)−1x′) = e

so there exists y′ ∈ K such that f ′(y′) = s(x)−1x′. However, the commutativity of the left-most
square in (84) reads f ′ = s ◦ f , and so we have

x′ = s(x)f ′(y′) = s(x)s(f(y′)) = s(xf(y′))

This establishes the surjectivity of s.

4.4

We will now give criteria for when a short exact sequence is equivalent to either (81) or (83).

Proposition 9. A short exact sequence 1→ K
f−→ G

g−→ L→ 1 is equivalent to (81) if and only if
there exists a homomorphism

ϕ : G→ K (85)

such that ϕ ◦ f = IdK .

Proof. We leave it to you to deduce the “only if” statement from the fact that the sequence (81)
does indeed possess a homomorphism (85) (if G = K × L, then you simply define ϕ to be the
projection onto the first factor). As for the “if” statement, assume that we have a homomorphism
(85). Then the commutative diagram

1 −−−−→ K
f−−−−→ G

g−−−−→ L −−−−→ 1

IdK

y ϕ×g
y IdL

y
1 −−−−→ K −−−−→ K × L −−−−→ L −−−−→ 1

(with the morphisms on the bottom row being k 7→ (k, e) and (k, ℓ) 7→ ℓ) gives the required
equivalence of short exact sequences.

Proposition 10. An extension 1 → K
f−→ G

g−→ L → 1 is equivalent to (83) if and only if there
exists a homomorphism

ψ : L→ G (86)

such that g ◦ ψ = IdL.
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Proof. We leave it to you to deduce the “only if” statement from the fact that the sequence (83)
does indeed possess a homomorphism (86) (if G = K ⋊ L, then you define ψ(ℓ) = (e, ℓ),∀ℓ ∈ L).
As for the “if” statement, assume that we have a homomorphism (86). It allows us to define an
action

L↷ K

as follows: for every k ∈ K and ℓ ∈ L, the fact that Im f = Ker g and g ◦ ψ = IdL implies that

ψ(ℓ)f(k)ψ(ℓ)−1 ∈ G

lies in Ker g = Im f , and thus may be written uniquely as f(x) for some x ∈ K. Define the function

Φℓ : K → K, k 7→ the aforementioned x

There are several things to check, all of which are easy, but we recommend you go through the
steps yourselves:

� Φe = IdK ,

� Φℓ is a bijection for all ℓ ∈ L,

� Φℓ is a homomorphism for all ℓ ∈ L,

� Φℓ ◦ Φℓ′ = Φℓℓ′ for all ℓ, ℓ
′ ∈ L.

Thus, the Φℓ defined above give rise to a semidirect product K ⋊ L. We claim that the diagram

1 −−−−→ K
f−−−−→ G

g−−−−→ L −−−−→ 1

IdK

x f×ψ
x IdL

x
1 −−−−→ K −−−−→ K ⋊ L −−−−→ L −−−−→ 1

(with the morphisms on the bottom row being k 7→ (k, e) and (k, ℓ) 7→ ℓ, and the middle vertical
map being (k, ℓ) 7→ f(k)ψ(ℓ)) gives the required equivalence. Indeed, to show this we need to check
two facts: the first is that the diagram commutes, which is obvious. The second fact is that the
middle vertical map is a homomorphism, which follows from the equality

(f × ψ)((k, ℓ)(k′, ℓ′)) = (f × ψ)(kΦℓ(k′), ℓℓ′) = f(kΦℓ(k
′))ψ(ℓℓ′) =

= f(k)f(Φℓ(k
′))ψ(ℓ)ψ(ℓ′) = f(k)ψ(ℓ)f(k′)ψ(ℓ′) = (f × ψ)(k, ℓ)(f × ψ)(k′, ℓ′)

4.5

Recall the following important definition from Math 113.
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Definition 17. A group is called abelian if all of its elements pairwise commute, i.e.

gh = hg, ∀g, h ∈ G (87)

For an abelian group, it is customary to denote the product in “additive” notation, i.e.

g + h instead of gh (88)

and the identity by 0 instead of e.

The center Z(G) of any group G is abelian. Other examples of abelian groups are the cyclic groups
Z and Z/nZ. Let us now consider short exact sequences (78) with K,G,L abelian.

Lemma 8. Let K,L be abelian groups, and consider an action L↷ K by homomorphisms. Then

K ⋊ L

is abelian if and only if the action is trivial, i.e. Φℓ(k) = k for all k ∈ K, ℓ ∈ L.

Proof. The “if” statement is obvious. For the “only if” statement, note that K ⋊ L being abelian
implies that

k +Φℓ(k
′) = k′ +Φℓ′(k)

for all k, k′ ∈ K and ℓ, ℓ′ ∈ L. Letting k and ℓ′ be the identity elements in the formula above
implies that Φℓ(k

′) = k′ for all k′ ∈ K and ℓ ∈ L.

Lemma 8 implies that for short exact sequences of abelian groups (note that when working with
abelian groups, it is customary to denote the trivial group as 0 instead of 1; this should make it
clear whenever one of our short exact sequences is one of abelian vs general groups)

0→ K
f−→ G

g−→ L→ 0 (89)

the settings of Propositions 9 and 10 are actually one and the same. Thus, when all the groups
involved are abelian, we conclude that the existence of a homomorphism

ϕ : G→ K s.t. ϕ ◦ f = IdK

is equivalent to the existence of a homomorphism

ψ : L→ G s.t. g ◦ ψ = IdL

In these two equivalent cases, we call the short exact sequence (89) split, and either of the maps
ϕ or ψ will be called a splitting.

Example 3. When gcd(m,n) = 1, we claim that the short exact sequence (80) is split. Indeed,
explicit splittings are given by ϕ = “multiplication by b and reduction modulo m” and ψ = “multi-
plication by am”, where the integers a and b are chosen as in (59). In particular, we have

Z/mnZ ∼= Z/mZ× Z/nZ (90)

whenever gcd(m,n) = 1.

27



Lecture 5
5.1

We would like to classify abelian groups. However, we cannot hope to do so for all abelian groups,
there are just too many of them. Instead, we will classify the finitely generated ones, as per the
following definition.

Definition 18. We say that elements g1, . . . , gk generate an abelian group G if any element of G
can be written (not necessarily uniquely) as a linear combination

a1g1 + · · ·+ akgk

for various a1, . . . , ak ∈ Z. Here, we recall that we use additive notation, so ag means the same
thing as ga previously meant (i.e. the a-fold group operation of g with itself).

If an abelian group admits a finite set of generators, then we will call it finitely generated. Our
main result in Lectures 5 and 6 will be the classification of such groups, namely the proof of the
following result. We write Zr = Z× · · · × Z︸ ︷︷ ︸

r times

for any number r ≥ 0, and set Z0 = 0 the trivial group.

Theorem 5. Any finitely generated abelian group G is isomorphic to a direct product

Zr × Z/pd11 Z× · · · × Z/pdkk Z (91)

for some r ≥ 0 (called the rank of G) and various prime powers pd11 , . . . , p
dk
k (called the elementary

divisors of G). The decomposition (91) is unique up to permuting the factors.

Not all (and in fact, rather few) abelian groups are finitely generated, as the following result shows.

Proposition 11. The group of rational numbers Q with respect to addition is not finitely generated.

Proof. Assume for the purpose of contradiction that Q were finitely generated. Then there exist
rational numbers

b1
c1
, . . . ,

bk
ck

(for various b1, . . . , bk ∈ Z and c1, . . . , ck ∈ N) such that any element of Q can be written as

a1
b1
c1

+ · · ·+ ak
bk
ck

(92)

for various a1, . . . , ak ∈ Z. But the denominator of (92) must divide the fixed natural number
c1 . . . ck, so it is impossible for all rational numbers to be of the form (92).
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5.2

For any abelian group G and any n ∈ Z, the function

G→ G, g 7→ ng, ∀g ∈ G (93)

is a homomorphism (I recommend you check this). The kernel of this homomorphism, namely

Torsn(G) =
{
g ∈ G

∣∣∣ng = 0
}

(94)

is called the n-th torsion subgroup of G. It is easy to see that the n-th torsion subgroup is the
same as the (−n)-th torsion subgroup. Meanwhile, the 0-th torsion subgroup of G is the entire
G, so it is not an interesting concept. Thus, we will only work with the n-th torsion for natural
numbers n.

Lemma 9. For any abelian group G, the set

Tors(G) =

∞⋃
n=1

Torsn(G) (95)

is a subgroup. It will be called the torsion subgroup of G.

Proof. Since each Torsn(G) is a subgroup of G, this implies that Tors(G) contains the identity
element and that it is closed under taking inverses. It remains to show that the product of any two
elements in Tors(G) lies in Tors(G). To this end, note the obvious fact that

Torsn(G) ⊆ Torsmn(G)

for all m,n ∈ N. Thus, if we take an element g ∈ Torsm(G) ⊂ Tors(G) and an element h ∈
Torsn(G) ⊂ Tors(G), then both g and h lie in Torsmn(G). Since the latter is a subgroup of G, this
implies that g + h ∈ Torsmn(G) ⊂ Tors(G), as we were required to show.

An important aspect of torsion is that no element (except the identity element) can be simultane-
ously in the m-th torsion and the n-th torsion if gcd(m,n) = 1. In other words

{0} = Torsm(G) ∩ Torsn(G) (96)

for any abelian group G, whenever gcd(m,n) = 1. To see this, we invoke the existence of the
integers a, b from (59). If an element g ∈ G lied in both the m-th and n-th torsion subgroups, then

mg = ng = 0 ⇒ (am+ bn)g = 0 ⇒ g = 0
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5.3

An abelian group where the only torsion element is 0 (i.e. such that ng = 0 for some n ∈ N implies
g = 0) is called torsion-free. It is clear that Zr is torsion-free, as are all its subgroups. Meanwhile,
no finite group (other than the trivial group) can be torsion-free, since all its elements have finite
order.

Lemma 10. For any abelian group G, the quotient group

G/Tors(G)

is torsion-free.

Proof. Suppose g ∈ G has the property that n[g] = 0 in G/Tors(G) for some n ∈ N. Then

ng ∈ Tors(G)

which implies that there exists some m ∈ N such that mng = 0. This implies that g ∈ Tors(G), so
[g] = 0 in G/Tors(G).

If G is a group of the form in (91), then please show by yourself that

Tors(G) ∼= Z/pd11 Z× · · · × Z/pdkk Z

and G/Tors(G) ∼= Zr. Thus, as a stepping stone to proving Theorem 5, we will prove the following.

Proposition 12. Any torsion-free finitely generated abelian group G is free abelian, i.e.

G ∼= Zr

for some r ≥ 0.

5.4

Proposition 12 is an immediate consequence of Propositions 13 and 14.

Proposition 13. Any torsion-free finitely generated abelian group G is isomorphic to a subgroup
of Zk, for some k ≥ 0.

Proof. Let us adapt the notion of linear independence from linear algebra to the setting of abelian
groups. We say that g1, . . . , gk ∈ G are linearly independent if for all a1, . . . , ak ∈ Z,

a1g1 + · · ·+ akgk = 0 ⇒ a1 = · · · = ak = 0

Let us now assume that G is a torsion-free finitely generated abelian group. Consider a set of
generators g1, . . . , gk+ℓ ofG, and assume that g1, . . . , gk are a maximal subset of linearly independent
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elements among the aforementioned generators (this is always possible up to relabeling the g’s).
Therefore, the following homomorphism is injective

Zk γ−→ G, (a1, . . . , ak) 7→ a1g1 + · · ·+ akgk

However, the fact that the set g1, . . . , gk is maximal with respect to linear independence means that
the elements g1, . . . , gk, gi are linearly dependent, for all i ∈ {k + 1, . . . , ℓ}. Therefore, there exist
integers a1i , . . . , a

k
i , bi (with bi ̸= 0 due to the linear independence of g1, . . . , gk) such that

bigi = a1i g1 + · · ·+ aki gk

for all i ∈ {k+1, . . . , ℓ}. Letm be the least common multiple of bk+1, . . . , bℓ. Thus,mgk+1, . . . ,mgk+ℓ
can be written as linear combinations of g1, . . . , gk; since g1, . . . , gk+l generate G, we therefore con-
clude that mg can be written as a linear combination of g1, . . . , gk, for any g ∈ G. Therefore, the
image of the homomorphism

G
δ−→ G, g 7→ mg

is contained in the image of the injective homomorphism γ. This implies that δ factors as

δ : G→ Zk γ−→ G

However, δ is injective because G is torsion-free, which implies that the homomorphism G → Zk
we just constructed is also injective. Thus, G is isomorphic to the image of this homomorphism.

Proposition 14. Any subgroup of Zk is isomorphic to Zr for some r ≥ 0.

Proof. We will prove the required statement by induction on k. When k = 1, consider any subgroup
G ⊆ Z. Either G = 0 or G contains some non-zero element n. Choose the smallest positive integer
n ∈ G. Then nZ ⊆ G. If this inclusion were not an equality of sets, then there would exist
m ∈ Z with n ∤ m. But then the remainder of m mod n would also be in G, this contradicting the
minimality of n. We conclude that G = nZ ∼= Z.

Now we prove the induction step: suppose that any subgroup of Zk−1 is free, and let us show that
the same is true of any given subgroup G ⊆ Zk. Consider the short exact sequence

0→ Zk−1 ι−→ Zk π−→ Z→ 0 (97)

where the homomorphism π is projection onto the last coordinate. Then we define K = G ∩ Zk−1

and L = π(G), and leave it to you to check that (97) induces a short exact sequence

0→ K
ι′−→ G

π′
−→ L→ 0 (98)

However, we already classified the subgroups of Z: if L = 0, then G ∼= K is a subgroup of Zk−1,
which the induction hypothesis shows is free. Otherwise, L ∼= Z and we may choose a splitting of
the map π′: simply send 1 ∈ L to an arbitrary element in π′−1(1). As we have seen at the end of
Lecture 4, a split short exact sequence of abelian groups has the property G ∼= K × L. Since K is
free by the induction hypothesis and L ∼= Z, we are done.

31



5.5

In the course of the proof of Proposition 14, we (essentially) proved the following interesting prop-
erty of the abelian group Zℓ, for any ℓ ∈ N.

Lemma 11. Any short exact sequence of abelian groups

0→ K → G
π−→ Zℓ → 0 (99)

is split, and in particular, G ∼= K × Zℓ.

Proof. For every i ∈ {1, . . . , ℓ}, let ei be the standard generator of Zℓ, namely the vector (0, . . . , 1, . . . , 0)
with a single 1 on the i-th position and 0 everywhere else. Since the homomorphism π : G→ Zℓ in
the given short exact sequence is surjective, we may choose gi ∈ π−1(ei) for all i. Then the function

ψ : Zℓ → G, (n1, . . . , nℓ) 7→ n1g1 + · · ·+ nℓgℓ

is easily seen to be a homomorphism (please check this). Moreover, by construction, it is a splitting
in the sense that π ◦ ψ = IdZℓ . Therefore, the short exact sequence (99) is split.

As a corollary of Lemma 10, Lemma 11 and Proposition 12, we have

G ∼= Zr × Tors(G) (100)

for any finitely generated abelian group G, for some r ≥ 0. To see this, recall that Lemma 10 yields
a short exact sequence

0→ Tors(G)→ G
π−→ L→ 0

where L is a torsion-free abelian group. However, the fact that G is finitely generated means that
the same is true for L (specifically, a finite set of generators for L is given by the images under π
of some finite set of generators of G). Proposition 12 then implies that L is isomorphic to Zr for
some r ≥ 0, and then Lemma 11 implies (100).
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Lecture 6
6.1

Formula (100) reduces the classification problem of finitely generated abelian groups G (our sought-
for Theorem 5) to understanding Tors(G). The first step is the following.

Proposition 15. If G is a finitely generated abelian group, then any subgroup H ≤ G is also
finitely generated.

Note that Proposition 15 does not hold for non-abelian groups (for which there exists an analogous
notion of finite generation).

Proof. The proof has much in common with that of Proposition 14. We will prove Proposition 15
by induction on the number of generators of G. When G has a single generator (i.e. is cyclic), then
G ∼= Z or G ∼= Z/nZ. We have already showed that all subgroups of Z are either 0 or mZ, and we
leave it as an exercise to you to show that all subgroups of Z/nZ are of the form mZ/nZ for some
divisor m|n.

Let us now assume that Proposition 15 holds for all abelian groups with fewer than n generators,
and let us prove it for a group G with generators g1, . . . , gn. Pick an arbitrary subgroup H, which
we will prove to be finitely generated. Let G′ ⊂ G be the subgroup generated by g1, . . . , gn−1, and
consider the short exact sequence

0→ G′ ι−→ G
π−→ G/G′ → 0

If we let K = H ∩G′ and L = π(H), then we have a short exact sequence

0→ K
ι−→ H

π−→ L→ 0

Since K and L are subgroups of G′ and G/G′ (which have n−1 and 1 generators, respectively), the
induction hypothesis implies that K and L are both finitely generated. Let x1, . . . , xk be generators
of K and y1, . . . , yℓ be generators of ℓ. Then we claim that

ι(x1), . . . , ι(xk), g1, . . . , gℓ (101)

are generators of H, for any choice of {gi ∈ π−1(yi)}i∈{1,...,ℓ}. Indeed, for any h ∈ H, we may write

π(h) = b1y1 + · · ·+ bℓyℓ

for various b1, . . . , bℓ ∈ Z. This implies that

h− b1g1 − · · · − bℓgℓ ∈ Ker π = Im ι

Because ι is injective, its image is isomorphic to K, so there must exist a1, . . . , ak ∈ Z such that

h− b1g1 − · · · − bℓgℓ = a1ι(x1) + · · ·+ akι(xk)

This establishes the claim that H is generated by the elements (101).
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6.2

As a consequence of Proposition 15, the torsion subgroup of a finitely generated abelian group G is
finitely generated. If we let g1, . . . , gk to be a collection of such generators of Tors(G) (which must
have finite orders a1, . . . , ak ∈ N, respectively), then any element of Tors(G) is of the form

b1g1 + · · ·+ bkgk

where bi ∈ {0, . . . , ai − 1} for all i ∈ {1, . . . , k}. Thus, we conclude that

any finitely-generated torsion abelian group is finite (102)

(when we say “torsion abelian group”, we mean an abelian group in which every element has finite
order). Therefore, it remains to classify finite abelian groups. To this end, we will need to study
the structure of torsion subgroups in finer detail. A natural generalization of the direct product of
two groups is the direct product of countably many abelian groups G1, G2, . . .

∞∏
i=1

Gi =
{
(g1, g2, . . . )

∣∣∣gi ∈ Gi, ∀i ∈ N
}

(with all operations defined component-wise) which is also an abelian group. Moreover, the direct
sum of countably many abelian groups G1, G2, . . .

∞⊕
i=1

Gi =
{
(g1, g2, . . . )

∣∣∣gi ∈ Gi, ∀i ∈ N, all but finitely many of the gi’s are 0
}

(103)

(with all operations still defined component-wise) is also an abelian group. If only finitely many of
the groups G1, G2, . . . are non-trivial, then the direct product and direct sum are the same, but in
general the former is bigger than the latter.

6.3

Let us now consider any abelian group G and any prime number p. The p-torsion subgroup (note
the terminological distinction between this and the “p-th torsion subgroup” defined in Subsection
5.2) is

Ap(G)) =

∞⋃
n=0

Torspn(G) (104)

Just as in the proof of Lemma 9, one shows (and I advise you to redo the proof) that

Torsp0(G) ⊆ Torsp1(G) ⊆ Torsp2(G) ⊆ . . .

and that (104) is indeed a subgroup. Moreover, these torsion subgroups provide a direct sum
decomposition of the entire torsion subgroup (95), as per the following result.

Lemma 12. For any abelian group G, we have

Tors(G) ∼=
⊕

prime p

Ap(G) (105)

with the direct sum of abelian groups defined as in (103).
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Proof. There is a natural homomorphism from the right-hand side to the left-hand side of (105)∑
prime p

gp ←
(
gp ∈ Ap(G)

)
prime p

(106)

The fact that all but finitely many of the gp’s are equal to 0 (the defining feature of the direct sum)
means that their sum is well-defined. It remains to show that (106) is

� injective: suppose we have a collection of elements g1, . . . , gk ∈ G such that pd11 g1 = · · · = pdkk gk =
0, where p1, . . . , pk are distinct primes and d1, . . . , dk are natural numbers. If the collection of
these gi’s lies in the kernel of (106), i.e. if

g1 + g2 + · · ·+ gk = 0

then we may multiply the formula above by pd22 . . . pdkk . If we do so, we have

pd22 . . . pdkk g1 + pd22 . . . pdkk g2︸ ︷︷ ︸
=0

+ · · ·+ pd22 . . . pdkk gk︸ ︷︷ ︸
=0

= 0 ⇒ pd22 . . . pdkk g1 = 0

However, we also have pd11 g1 = 0. Since pd11 and pd22 . . . pdkk are coprime, then (96) implies that
g1 = 0. The analogous argument shows that g2 = · · · = gk = 0, which implies that the kernel of
(106) is trivial.

� surjective: let’s assume that we have an element g ∈ Torsn(G) ⊂ Tors(G) and let us consider the
prime decomposition

n = pd11 p
d2
2 . . . pdkk

where p1, . . . , pk are distinct primes, and d1, . . . , dk ∈ N. Then the element

gi = pd11 . . . p
di−1

i−1 p
di+1

i+1 . . . p
dk
k g

has order dividing pdii , and thus lies in Api(G). However, the natural numbers{
pd11 . . . p

di−1

i−1 p
di+1

i+1 . . . p
dk
k

}
i∈{1,...,k}

have greatest common divisor 1. By the same token as the existence of the integers a, b such that
(59) holds, there exist integers a1, . . . , ak such that

k∑
i=1

aip
d1
1 . . . p

di−1

i−1 p
di+1

i+1 . . . p
dk
k = 1

Therefore, we have

a1g1 + · · ·+ akgk =

(
k∑
i=1

aip
d1
1 . . . p

di−1

i−1 p
di+1

i+1 . . . p
dk
k

)
g = g

which implies that g lies in the image of the homomorphism (106).
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6.4

The following is a key notion. Fix a prime number p.

Definition 19. We call a group G a p-group if the order of every element of G is a power of p.

Although the notion above makes sense for all groups (and we will see it applied as such in a few
lectures), for the time being we will consider it in the context of abelian groups. By definition,
Ap(G) defined in (104) is a p-group for any abelian group G.

Proposition 16. A finite abelian group G is a p-group if and only if |G| is a power of p.

The “if” statement is an immediate consequence of Lagrange’s theorem, since the order of any
element divides the order of the group. The “only if” statement is an immediate Corollary of the
following fact.

Proposition 17. If a prime p divides the order of a finite abelian group G, then G has an element
of order p.

Proof. We will prove the statement by induction on the order of G. If G is cyclic, then the result
is easy to prove, so please do it yourselves. Otherwise, we may consider an element h ∈ G which
does not generate the whole of G, and assume for the purpose of contradiction that a = ordG(h)
is coprime with p (indeed, if p|a, then we can easily find a power of h whose order is exactly p).
Then we let H be the subgroup genereated by h and consider the quotient subgroup

G/H

Because the order of H is coprime with p, then p divides the order of G/H. By the induction
hypothesis, there exists an element g ∈ G such that [g] has order p in G/H. This implies that

pg ∈ H ⇒ apg = 0

in G. This implies that ag either has order p (in which case we are done) or that ag = 0. However,
since gcd(a, p) = 1, then pg ∈ H and ag = 0 ∈ H would imply that g ∈ H, which contradicts the
fact that [g] has order p in G/H.

6.5

If G is a finite abelian group, then it is equal to its torsion subgroup. In this case, only finitely
many of Ap(G) can be non-trivial, or else the right-hand side of (105) would be an infinite set.
Therefore, any finite abelian group G has the property that

G ∼= Ap1(G)× · · · ×Apk(G) (107)

for distinct primes p1, . . . , pk, where each Api(G) is a finite abelian pi-group.

36



Proposition 18. Any finite abelian p-group is isomorphic to

Z/pd1Z× · · · × Z/pdkZ (108)

for various positive integers d1, . . . , dk.

Proof. We will prove the Proposition by induction on |G|, with the induction base corresponding
to the trivial group. Consider an element of G of largest possible order: let us call it h and assume
that its order is pd1 . Let H ∼= Z/pd1Z be the subgroup of G generated by h. The quotient group

G/H

is a p-group, because of Proposition 16 (if a group has order equal to a power of p, then so do all
of its subgroups, and therefore so do all of its quotients). By the induction hypothesis, there exist
positive integers d2, . . . , dk such that G/H ∼= Z/pd2Z × · · · × Z/pdkZ. Any element of G/H has
order less than (any preimage of the same element) in G, so the fact that pd1 is the maximal order
implies that d1 ≥ d2, . . . , dk. We conclude that there exists a short exact sequence

0→ Z/pd1Z→ G
π−→ Z/pd2Z× · · · × Z/pdkZ→ 0

To conclude the proof of Proposition 18, it suffices to construct a splitting of the homomorphism
π above. To this end, for each i ∈ {2, . . . , k} we define gi to be an arbitrary element of G whose
image under π is (0, . . . , 1, . . . , 0) ∈ Z/pd2Z× · · · × Z/pdiZ× · · · × Z/pdkZ. We have

pdi [gi] = 0 ∈ G/H ⇒ pdigi = aih, ∀i ∈ {2, . . . , k}

for some ai ∈ Z. Let us write ai = psiti where ti is coprime with p. Then the formula above reads

pdigi = psitih (109)

Since all elements of G have order a power of p that is by assumption ≤ pd1 , we have

0 = pd1gi = pd1−di+sitih

Since ti is coprime with p, the order of h is the same as the order of th (find an argument for this,
using the fact that G is a p-group) and so the formula above implies that d1−di+si ≥ d1 ⇒ si ≥ di
for all i ∈ {2, . . . , k}. But then we can rewrite (109) as

pdi(gi − psi−ditih︸ ︷︷ ︸
call this g′i

) = 0

The formula above ensures that the assignment

Z/pd2Z× · · · × Z/pdkZ ψ−→ G, (x2, . . . , xk) 7→ x2g
′
2 + · · ·+ xkg

′
k

is a well-defined homomorphism. It is also clear that π ◦ ψ = Id by construction, and we are done.

Proof. of Theorem 5 (without the statement that the decomposition (91) is unique up to permuting
the factors, which we choose not to do): By (100), any finitely generated abelian group is Zr times
its torsion subgroup. By Proposition 15 and equation (102), the latter is finite. This implies that
the torsion subgroup in question is a product of factors as in (107), and Proposition 18 ensures
that all these factors are products of the form Z/pdZ for various primes p and various d ∈ N.
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Lecture 7
7.1

One usually thinks of abelian groups as being simple, but this terminology actually belongs to a
different family of groups.

Definition 20. A group G is called simple if it has exactly two normal subgroups: 1 and G (thus
the trivial group is not considered to be simple, much like the number 1 isn’t considered to be prime).

Alternatively, a group is simple if and only if its only quotients are itself and the trivial group. In
particular, any action of a simple group must either be trivial (i.e. every group element acts by the
identity) or faithful. Because any subgroup of an abelian group is normal, the only simple abelian
groups are Z/pZ for a prime number p. But among the non-abelian groups we have a lot more
examples; the following is a particularly important one.

Theorem 6. Although the symmetric group Sn is not simple, its index two normal subgroup

An = Ker
(
Sn

sgn−−→ Z/2Z
)

is simple, for any n ≥ 5 (recall that sgn sends any length k + 1 cycle to k mod 2).

Proof. Let H ⊴ An be any non-trivial normal subgroup of An, and let h ∈ H be any non-identity
element. As we know from Math 113, the permutation h can be written as a product of disjoint
cycles. Moreover, since H is normal, we may conjugate h by any permutation and get an element
of H. As we have seen in the proof of Proposition 5, conjugating a permutation has the effect of
changing the entries of its constituent cycles. So if

h = . . . (i1 i2 . . . ik) . . . (110)

then
h′ = . . . (j1 j2 . . . jk) . . . (111)

also lies in H, where {j1, . . . , jk} is any permutation of {i1, . . . , ik}. In particular, we may choose
j1 = ik, j2 = ik−1, . . . , jk = i1, and then the cycle in (111) will be the inverse of the cycle in (110).
Or if we choose j1 = ik, j2 = ik−1, . . . , jk−3 = i4, jk−2 = i2, jk−1 = i3, jk = i1, and then the
product of the cycle in (111) with the cycle in (110) will be the length 3 cycle (i1 i3 i2). Thus, by
appropriately choosing (111) in relation to (110) we may ensure that H contains a length 3 cycle.
By suitably conjugating the aforementioned length 3 cycle, we conclude that H contains all the
length 3 cycles. However, any product of two transpositions (i.e. length 2 cycles) can be written
as a product of length 3 cycles, due to the following identities for all distinct numbers a, b, c, d

(a b)(a b) = e

(a b)(a c) = (c b a)

(a b)(c d) = (c a d)(b c a)

Since any permutation is a product of transpositions, it follows that any element of An is a product
of an even number of transpositions, from which it follows that every element of An is a product
of length 3 cycles. Thus, An = H, which implies that An is simple.

38



7.2

One may use simple groups as the building blocks for more general groups, as follows.

Definition 21. A subnormal series of length k of a group G is a collection of subgroups

1 = G0 ◁ G1 ◁ · · · ◁ Gk−1 ◁ Gk = G (112)

such that Gi−1 is a normal subgroup of Gi, for all i ∈ {1, . . . , k}. If moreover all the quotients
G1/G0, . . . , Gk/Gk−1 are simple groups, then we call (112) a composition series of G.

By the correspondence theorem 4, it is easy to show that (112) is a composition series if and only
if it is maximal, i.e. we cannot enlarge it further by inserting more normal subgroups in between
Gi−1 and Gi. Not every group has a composition series, for example Z does not. Indeed, any of
its non-trivial subgroups is isomorphic to Z itself, so any series such as (112) is doomed to go on
forever. However, finite groups all have composition series, as per the following result.

Proposition 19. Any finite group has a composition series.

Proof. By induction on the order of G. Take a maximal normal subgroup H ◁ G, which exists
because G is a finite set. Then consider the homomorphism

π : G→ G/H

If the group G/H failed to be simple, then by Theorem 4

π−1(a proper normal subgroup of G/H)

would be a normal subgroup of G strictly contained between H and G. This is not allowed, because
of the assumption that H is maximal, so we conclude that G/H is simple. By the induction
hypothesis, H has a composition series; adding G to its right gives the required composition series
of G.

For a finite abelian group, composition series can be written down very explicitly. For instance

0 < Z/pZ < Z/p2Z < · · · < Z/pkZ

is a composition series, where Z/pi−1Z = pZ/piZ is interpreted as a subgroup of Z/piZ.

7.3

Normal subgroups and quotient groups inherit composition series from their parent group, as we
will show in the Propositions below.

Proposition 20. If a group G has a composition series (112), then for any normal subgroup H ⊴ G
we may form

1 = H0 ⊴ H1 ⊴ · · · ⊴ Hk−1 ⊴ Hk = H (113)

where Hi = H ∩Gi. Upon removing redundancies from the series above (i.e. if Hi−1 = Hi for some
i, then we remove Hi from the series), then (113) yields a composition series for H.
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Proof. Let us show that for all i, the subgroup Hi−1 is normal in Hi. To this end, take any g ∈ Hi

and h ∈ Hi−1. The element ghg−1 is

� in Gi−1, because Gi−1 is normal in Gi, and

� in H, because H is a subgroup.

Thus ghg−1 ∈ Hi−1, which implies that Hi−1 is normal in Hi. Having said this, we note that the
inclusions Gi−1 ↪→ Gi induce an injective homomorphism

Hi/Hi−1
φ
↪→ Gi/Gi−1 (114)

Let us now show that Im φ is normal in Gi/Gi−1. Take any [g], [h] ∈ Gi/Gi−1 represented by some
g ∈ Gi and h ∈ Hi. Then the element ghg−1 is

� in Gi, because Gi is a subgroup, and

� in H, because H is normal in G

Thus ghg−1 ∈ Hi, so [g][h][g]−1 ∈ Im φ. Since Gi/Gi−1 is simple, then Im φ is either the trivial
subgroup or the entire Gi/Gi−1. In the former case we have Hi = Hi−1 and in the latter case we
have Hi/Hi−1

∼= Gi/Gi−1. This implies the required conclusion.

Remark. Non-normal subgroups do not necessarily inherit composition series. For instance, many
simple groups G contain elements of infinite order (so they contain Z as a subgroup) but we have
already seen that Z does not have a composition series.

7.4

Just like normal subgroups inherit composition series (as we showed in the previous Subsection),
we will now show that quotient groups also do.

Proposition 21. If a group G has a composition series (112), then for any normal subgroup H ⊴ G
with corresponding quotient group Ḡ = G/H, we may form

1 = Ḡ0 ⊴ Ḡ1 ⊴ · · · ⊴ Ḡk−1 ⊴ Ḡk = Ḡ (115)

where Ḡi = HGi/H. Upon removing redundancies from the series above (i.e. if Ḡi−1 = Ḡi for
some i, then we remove Ḡi from the series), then (115) yields a composition series for Ḡ.

Proof. We first show that Gi−1 being normal in Gi implies that HGi−1 is normal in HGi. To see
this, take any hg ∈ HGi and any h′g′ ∈ HGi−1 (with h, h′ ∈ H, g ∈ Gi and g′ ∈ Gi−1). Then

(hg)(h′g′)(hg)−1 = hgh′g′g−1h−1 ∈ hgHg′g−1h−1 = hH gg′g−1︸ ︷︷ ︸
some g′′∈Gi−1

h−1 ⊆ Hg′′H = Hg′′

(the fact that H is normal implies that gH = Hg for any g ∈ G). Now that we showed that HGi−1

is a normal subgroup of HGi, Theorem 4 implies that Ḡi−1 is a normal subgroup of Ḡi.
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By the second isomorphism theorem, we have Ḡi ∼= Gi/H ∩Gi for all i. The inclusion Gi−1 ↪→ Gi
induces an injective homomorphism

Ḡi−1
∼= Gi−1/H ∩Gi−1 ↪→ Gi/H ∩Gi ∼= Ḡi

The quotient Ḡi/Ḡi−1 is isomorphic to Gi/K, where K is the subgroup of Gi generated by Gi−1

and H ∩ Gi. Since both Gi−1 and H ∩ Gi are normal subgroups of Gi, then the second bullet of
Proposition 7 implies that K is also normal in Gi. However, by the correspondence theorem, the
simplicity of Gi/Gi−1 implies that there are no normal subgroups strictly contained between Gi−1

and Gi. Therefore, Gi/K is either the trivial group or a simple group, so (115) is (after removing
redundancies) a composition series.

7.5

We will now study how composition series of smaller groups lift to bigger groups.

Proposition 22. Suppose we have a short exact sequence of groups

1→ K → G
π−→ L→ 1

and that both K and L have composition series

1 = K0 ◁ K1 ◁ · · · ◁ Km−1 ◁ Km = K

1 = L0 ◁ L1 ◁ · · · ◁ Ln−1 ◁ Ln = L

Then there exists a composition series

1 = G0 ◁ G1 ◁ · · · ◁ Gm+n−1 ◁ Gm+n = G (116)

with Gi ∼= Ki for i ≤ m and Gi ∼= π−1(Li−m) for i > m.

Proof. First of all, it is clear that the firstm inclusions in (116) are normal subgroups, with quotients
isomorphic to those in the composition series of K (thus the quotients are simple). As for the next
m inclusions, the correspondence Theorem 4 states that there is a one-to-one correspondence{

subgroups K ≤ H ≤ G
}
↔
{
subgroups H̄ ≤ L

}
explicitly given by H = π−1(H̄). Property 2 of said theorem states that subgroups H̄ ⊴ H̄ ′ in the
right-hand side correspond to subgroups H ⊴ H ′ in the left-hand side, such that

H ′/H ∼= H̄ ′/H̄

This shows that the last n inclusions in (116) are also normal subgroups, with quotients isomorphic
to those in the composition series of L (thus the quotients are simple).
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7.6

If a group has a composition series, then it is likely that it has a lot of them. However, any two
composition series are related by the following result, called the Jordan-Hölder theorem.

Theorem 7. For any group G, any two composition series

1 = G0 ◁ G1 ◁ · · · ◁ Gk−1 ◁ Gk = G = G′
ℓ ▷ G

′
ℓ−1 ▷ · · · ▷ G′

1 ▷ G
′
0 = 1 (117)

are equivalent, i.e. the sequences of quotients{
G1/G0, . . . , Gk/Gk−1

}
and

{
G′

1/G
′
0, . . . , G

′
ℓ/G

′
ℓ−1

}
(118)

are the same up to permutation and isomorphism. In particular, k = ℓ. The (isomorphism classes
of the) groups (118) are called the composition factors of G.

Note that equivalence of composition series is an equivalence relation. Before we jump into the proof
of the Theorem, let us provide an illustrative example. There are two length 2 composition series of
Z/6Z, one involving the subgroup {0, 3} ∼= Z/2Z and one involving the subgroup {0, 2, 4} ∼= Z/3Z.
The composition factors for these two composition series are (Z/2Z,Z/3Z) and (Z/3Z,Z/2Z).

Proof. We will do induction on the number min(k, ℓ) (and then by k + ℓ to break ties). The case
when this number is 1 is trivial, because a simple group cannot have a composition series of length
≥ 2, on account of not having any non-trivial normal subgroups. Let us now assume min(k, ℓ) ≥ 2,
and prove the induction step. We may assume that Gk−1 ̸= G′

ℓ−1 (otherwise we simply apply the
induction hypothesis to Gk−1 = G′

ℓ−1 instead of G). Since Gk−1 and G′
ℓ−1 are both normal in G,

both their product
P = Gk−1G

′
ℓ−1

and their intersection
H = Gk−1 ∩G′

ℓ−1

are normal in G (see Proposition 7). Then the second isomorphism Theorem 3 implies that

Gk−1/H ∼= P/G′
ℓ−1 and G′

ℓ−1/H
∼= P/Gk−1

However, by the correspondence theorem, P/G′
ℓ−1 is a normal subgroup of G/G′

ℓ−1. Since the latter
group is simple, we must have P = G and so we have the following isomorphisms of simple groups

Gk−1/H ∼= G/G′
ℓ−1 and G′

ℓ−1/H
∼= G/Gk−1 (119)

Proposition 20 ensures that H has a composition series (whose length m must be less than or
equal to the lengths of composition series of either Gk−1 or G′

ℓ−1, which are ≤ k − 1 and ≤ ℓ− 1,
respectively), which we may extend to composition series

1 ◁ H1 ◁ · · · ◁ Hm−1 ◁ H ◁ Gk−1 ◁ G (120)

and
1 ◁ H1 ◁ · · · ◁ Hm−1 ◁ H ◁ G′

ℓ−1 ◁ G (121)

By the induction hypothesis, (120) and (121) are equivalent to the composition series on the left
and on the right of (117), respectively. Since (120) and (121) are equivalent by (119), we are done.
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Lecture 8
8.1

We have already encountered groups that have composition series (112). The following is then a
related notion.

Definition 22. A group G is called solvable if it has a subnormal series

1 = G0 ◁ G1 ◁ · · · ◁ Gk−1 ◁ Gk = G (122)

such that Gi−1 is a proper normal subgroup of Gi such that Gi/Gi−1 is abelian, for all i ∈ {1, . . . , k}.

The terminology stems from Galois theory, specifically the theory of polynomial equations which
admit solutions by radicals, in which solvable groups play a key role. Specifically, if you take a
class in Galois theory you will definitely encounter the following result.

Proposition 23. The symmetric group Sn is not solvable for n ≥ 5.

Proof. Suppose G = Sn admitted a subnormal series (122) with abelian quotients, and we will
consider such a series of maximal length k. Since Sn is finite, this implies that the abelian quotient
groups Gi/Gi−1 are finite for all i ∈ {1, . . . , k}. If one of these abelian quotient groups Gi/Gi−1

were not isomorphic to Z/pZ, then we may find a proper subgroup 1 ⊊ H̄ ⊊ Gi/Gi−1 (prove this,
it’s quite easy). By the correspondence Theorem 4, this would mean the existence of a subgroup

Gi−1 ◁ H ◁ Gi

which violates the maximality of the number k. However, Z/pZ is also a simple group, so we con-
clude that Sn admits a composition series all of whose factors are Z/pZ. However, this contradicts
the Jordan-Holder theorem 7 and the fact that Sn admits the composition series

1 ◁ An ◁ Sn

(recall from Theorem 6 that An is simple for n ≥ 5).

8.2

Solvable groups enjoy much the same properties as groups with composition series, specifically the
following analogues of Propositions 20, 21 and 22.

Proposition 24. Any subgroup of a solvable group is solvable.

Proof. The proof follows that of Proposition 20 closely, except that it applies to arbitrary subgroups
and not just normal subgroups. Thus, take a solvable group G with a subnormal series

1 = G0 ◁ G1 ◁ · · · ◁ Gk−1 ◁ Gk = G

43



with each Gi/Gi−1 abelian. Then for any subgroup H ≤ G, consider the series

1 = H0 ◁ H1 ◁ · · · ◁ Hk−1 ◁ Hk = H (123)

with Hi = H ∩Gi. One shows that Hi−1 is a subgroup of Hi just like in the proof of Proposition
20, and moreover we have an analogue of the injective homomorphism

Hi/Hi−1
φ
↪→ Gi/Gi−1

of (114). Since any subgroup of an abelian group is abelian, the fact that Gi/Gi−1 is abelian implies
that Hi/Hi−1 is abelian. Therefore, the existence of the series (123) implies that H is solvable.

The following results are proved just like Propositions 21 and 22, so we will not repeat the proofs.

Proposition 25. Any quotient of a solvable group is solvable.

Proposition 26. Suppose we have a short exact sequence of groups

1→ K → G
π−→ L→ 1

with K and L solvable. Then G is solvable.

Proposition 26 provides a rich class of examples of solvable groups: any group which can be obtained
by finitely many steps of taking extensions (such as semi-direct products) from abelian groups. All
dihedral groups are solvable, as is the alternating group A4.

8.3

We will now provide an alternative description of solvable groups. Recall the following from Math
113.

Definition 23. Given a subset X of a group G, the smallest subgroup H ≤ G which contains X is
called the subgroup generated by X. Explicitly, H consists of arbitrary products of elements of X
and their inverses.

Definition 24. Given subsets X,Y ⊆ G, let [X,Y ] ≤ G denote the subgroup of G generated by{
xyx−1y−1

∣∣∣x ∈ X, y ∈ Y }
The derived subgroup (or commutator subgroup) of G is defined to be

[G,G] (124)

Proposition 27. For any group G, the derived subgroup [G,G] is a normal subgroup of G and

G/[G,G]

is abelian. Moreover, if any H ⊴ G has the property that G/H is abelian, then [G,G] ⊆ H.

44



Proof. To show that a subgroup is normal, one must show that it is preserved under conjugation
with an arbitrary h ∈ G. However, the conjugation by g of any commutator is another commutator,
as

gaba−1b−1g−1 = (gag−1)(gbg−1)(gag−1)−1(gbg−1)−1

Therefore, the conjugation by g of an arbitrary product of commutators is a product of commuta-
tors, so [G,G] is a normal subgroup of G. The quotient G/[G,G] is clearly abelian since

[a][b][a−1][b−1] = [aba−1b−1] = e ∈ G/[G,G] ⇒ [a][b] = [b][a]

More generally, for any normal subgroup H ⊴ G such that the quotient G/H is abelian, we have

[a][b][a−1][b−1] = [aba−1b−1] = e in G/H ⇒ aba−1b−1 ∈ H

for all a, b ∈ G. Therefore, [G,G] ⊆ H.

8.4

The derived subgroup of a group is trivial if and only if the group is abelian. But the derived
subgroup need not be abelian itself, so we can take the derived subgroup of the derived subgroup,
and so on. This leads to the notion of derived series of a group G, which is defined as

· · · ⊴ G(2) ⊴ G(1) ⊴ G(0) = G (125)

where G(i) = [G(i−1), G(i−1)] is the derived subgroup of G(i−1) for all i.

Proposition 28. A group G is solvable if and only if its derived series eventually becomes trivial,
i.e. if there exists some k ∈ N such that G(k) = 1.

Proof. The “if” statement is trivial, because if the derived series is finite, then Proposition 27
ensures that it provides precisely the kind of subnormal series with abelian quotients, that charac-
terizes solvable groups. To prove the “only if” statement, let us consider a solvable group G with
series (122). The last sentence in Proposition 27 ensures the fact that

G(1) ⊆ Gk−1

Taking the derived subgroups with respect of the inclusion above implies

G(2) ⊆ [Gk−1, Gk−1] ⊆ Gk−2

where the second inclusion again stems from the fact that the quotient Gk−1/Gk−2 is abelian
(invoking the last sentence of Proposition 27). Repeating this argument k−2 more times ultimately
implies G(k) ⊆ G0 = 1, which implies that the derived series eventually becomes trivial.
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8.5

In Proposition 28, we considered the series of commutator subgroups starting from G, and showed
that it terminates if and only if G is solvable. A stronger notion is the following.

Definition 25. A group G is called nilpotent if the sequence of subgroups defined by G{0} = G
and

G{i} = [G{i−1}, G]

becomes the trivial group 1 after finitely many steps.

For an abelian group, we have G{1} = 1, so nilpotent groups can be interpreted as generalizations
of abelian groups. For a nilpotent group G, the sequence of subgroups

· · · ⊴ G{2} ⊴ G{1} ⊴ G{0} = G (126)

is actually a normal series, in the sense that every G{i} is a normal subgroup of G. One can prove
this by induction on i: if one assumes that G{i−1} is normal in G, then any commutator

a ba−1b−1︸ ︷︷ ︸
∈G{i−1}

, ∀a ∈ G{i−1}, b ∈ G (127)

lies in G{i−1}, and so G{i} is a subgroup of G{i−1}. The fact that G{i} is normal in G comes from
the fact that conjugating an element of the form (127) by an arbitrary element of G still produces
an element of the form (127), which we leave to you as an exercise. The series (126) is called the
lower central series of G.

Proposition 29. Any nilpotent group is solvable.

Proof. Let G be a nilpotent group. One can prove by induction on i that G(i) ⊆ G{i} for all i,
which is immediate, but important, so we leave it to you. Therefore, the fact that the sequence
(126) terminates implies that (125) terminates, so G is also solvable.
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Lecture 9
9.1

In Lecture 6, we studied finite abelian p-groups for some prime number p, see Definition 19. We
will now drop the abelian hypothesis and study finite p-groups, i.e. those groups where the order
of every element is a power of p (we will write this as “has order in pN from now on).

Lemma 13. A finite group is a p-group if and only if it has order pn for some n ∈ N.

The “if” implication is an immediate consequence of Lagrange’s theorem, because the order of any
element divides the order of the group. The “only if” implication is an immediate consequence of
the following result, often called Sylow’s first theorem.

Theorem 8. Let G be a finite group of order

|G| = pnr

for some prime p, some n ≥ 0 and some r coprime with p. Then G has a subgroup of order pn.

Indeed, once we have Theorem 8, the “only if” statement of Lemma 13 is quite imediate. If |G|
were not a power of p, then take some other prime number q ̸= p which divides |G|. Theorem 8
guarantees that |G| has a subgroup of order in qN, and any element in that subgroup will have
order in qN. This contradicts the fact that G is a p-group, i.e. every element has order in pN.

9.2

Clearly, the n = 0 case of Theorem 8 is trivial, so people typically assume n > 0.

Proof. of Theorem 8: We will do induction by |G| (the base case is |G| = p, which is trivial, because
the only group of prime order p is Z/pZ). If there exists a proper subgroup H < G such that

[G : H] divides r (128)

then |H| = pnr′ for some r′ < r that is coprime with p. The induction hypothesis then implies that
there exists a subgroup of H of order pn, which will also be the sought-for subgroup of G of order
pn. So we are left with the logical opposite of (128): for all proper subgroups H < G, we have

p divides [G : H] (129)

(indeed, since [G : H] > 1 is a divisor of |G| = pnr, then (128) and (129) are logically opposite
statements). Then let us apply the class equation (50)–(52)

|G| =
∑

conjugacy classes g̃

[G : CG(g̃)]

The left-hand side is a multiple of p. By (129), so is any summand in the right-hand side for which
CG(g̃) ̸= G. Therefore, we conclude that

the number of conjugacy classes for which
(
CG(g̃) = G

)
is a multiple of p
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However, an element g ∈ G has the property that CG(g) = G if and only if g ∈ Z(G), the center of
G. Since every element g ∈ Z(G) lies in its own conjugacy class, the formula above reads

p divides |Z(G)|

Since Z(G) is abelian, Proposition 17 implies that exists g ∈ Z(G) of order p. Therefore, the
subgroup H generated by g has order p, and is normal because g ∈ Z(G). The quotient group

Ḡ = G/H

has order pn−1r. By the induction hypothesis, Ḡ has a subgroup K̄ of order pn−1. By the corre-
spondence Theorem 4, this subgroup corresponds to a subgroup K ≤ G of order pn, as required.

9.3

A subgroup of order pn as in Theorem 8 is called a Sylow p-subgroup of G. It is customary to
denote such a subgroup by P . The next results give additional information on these subgroups.
We start with Sylow’s second theorem.

Theorem 9. All Sylow p-subgroups of a group G are conjugate to each other.

In other words, if we have one Sylow p-subgroup P ≤ G, then all other Sylow p-subgroups of G are
of the form gPg−1 for various g ∈ G.

Proof. Consider two Sylow p-subgroups P and P ′, and consider the left action of P on the set of
left cosets of P ′

P ↷ G/P ′

Applying formula (37) to this action reads

r = |G/P ′| =
∑

orbits P ·x

|P |
|StabP (x)|

Because the order of P is a power of p, all orbits in the right-hand side for which StabP (x) ̸= P
will contribute a multiple of p. However, r is coprime with p, so this means that there must be at
least one orbit whose stabilizer is the whole of P . This orbit precisely corresponds to a left coset
gP ′ which is fixed by P , which means that

hgP ′ = gP ′, ∀h ∈ P ⇔ g−1hg ∈ P ′, ∀h ∈ P ⇔ P ⊆ gP ′g−1 (130)

However, the fact that |P | = |P ′| implies that we must have P = gP ′g−1, as required.
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9.4

The converse of Theorem 9 is an obvious statement: any conjugate of a Sylow p-subgroup is a Sylow
p-subgroup. Thus, if for some reason there exists a single Sylow p-subgroup, it must be preserved by
conjugation, and thus would be normal. With this in mind, it becomes very important to calculate
the number of Sylow p-subgroups, which is the subject of Sylow’s third theorem.

Theorem 10. The number np of Sylow p-subgroups of a group G has the properties that

� np = [G : NG(P )], where P is any fixed Sylow p-subgroup, and np divides r

� np ≡ 1 modulo p

Proof. By Sylow’s second theorem, conjugation induces a transitive action

G↷
{
Sylow p-subgroups of G

}
(131)

and so np is the cardinality of the unique orbit. The stabilizer of any given Sylow p-subgroup P is
none other than the normalizer NG(P ). Therefore, the orbit-stabilizer theorem (36) implies that
cardinality of the unique orbit is

|G|
|NG(P )|

= [G : NG(P )]

Since P ≤ NG(P ), we have that np = [G : NG(P )] divides [G : P ] = r. Let us now fix a Sylow
p-subgroup P and consider the restriction of the conjugation action (131) to

P ↷
{
Sylow p-subgroups of G

}
Applying (37) this action implies that

np =
∑

orbits P ·P ′

|P |
|StabP (P ′)|

Since |P | = pn, every summand in the right-hand side is a multiple of p, except for those Sylow
p-subgroups P ′ which are fixed by conjugation by any element of P . If we show that the only such
Sylow p-subgroup P ′ is equal to P itself, then we conclude np ≡ 1 modulo p and we are done.
However, P ′ being fixed by conjugation with any element of P implies that

P ≤ NG(P
′)

Because |NG(P
′)| divides |G| = pnr, then P is a Sylow p-subgroup of NG(P

′). On the other hand,
P ′ is a normal subgroup of NG(P

′) (by the very definition of the normalizer), so Sylow’s second
theorem (with G replaced by NG(P

′)) implies that P = P ′, as desired.
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9.5

Let us now exemplify the Sylow theorems for the dihedral group D2n. The following Lemma will
be useful.

Lemma 14. Consider a normal subgroup H ⊴ G of a finite group G. Then for any prime p, the
intersection of a Sylow p-subgroup of G with H will be a Sylow p-subgroup of H.

Proof. Let P be a p-Sylow subgroup of G. As the group H ∩ P has order in pN, we need to show
that [H : H ∩P ] is coprime with p in order to ensure that the order of H ∩P is the maximal power
of p which divides |H|. The second isomorphism Theorem 3 implies that HP is a group of order

|HP | = |H||P |
|H ∩ P |

Therefore,
[HP : P ] = [H : H ∩ P ]

Since HP is a subgroup of G, the number on the left of the display above divides [G : P ], which is
coprime with p by the definition of a Sylow p-subgroup. Therefore, the number on the right of the
display above will also be coprime with p, thus implying that H ∩ P is a Sylow p-subgroup of H.

Let us apply the Lemma above for G = D2n and H ∼= Z/nZ being the normal subgroup of rotations,
where n = 2kr for some odd r. Since Z/nZ is abelian, it has a single Sylow 2-subgroup, namely

P = {0, r, 2r, . . . , (2k − 1)r} ⊆ {0, 1, 2, . . . , 2kr − 1} = Z/nZ

Any Sylow 2-subgroup of G = D2n has order 2k+1, and contains the order 2k subgroup P by Lemma
14. Therefore, if we take any reflection τ ∈ G−H, then any Sylow 2-subgroup must be of the form

Pτ = P ⊔ Pτ (132)

However, any set Pτ is a subgroup of G (try to prove it), so there are as many Sylow 2-subgroups
as reflections τ modulo left multiplication by P . As there are n reflections in total and |P | = 2k,
then there are r distinct Sylow 2-subgroups Pτ , which supports Sylow’s third Theorem 10. By the
same theorem, the fact that n2 = r implies that NG(Pτ ) = Pτ , which you can also try to prove by
hand.
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Lecture 10
10.1

We will now use the Sylow theorems to draw conclusions about finite groups whose orders have few
prime factors. First of all, we recall the basic fact that any group G of order p is isomorphic to

Z/pZ

To see this, take any non-identity element g ∈ G. Because the order of g divides |G| = p, then the
order of g must be equal to p, and so G equals the cyclic group generated by g.

Proposition 30. If p and q are distinct primes such that p ∤ q−1 and q ∤ p−1, any group of order
pq is isomorphic to

Z/pZ× Z/qZ (133)

Note that such a group is also cyclic, due to (90).

Proof. Assume |G| = pq. By Sylow’s third theorem, the number np of Sylow p-subgroups divides q
and is congruent with 1 mod p, so the only option is that np = 1. Similarly, we must have nq = 1.
Thus, we have a single Sylow p-subgroup P and a single q-subgroup Q, and they must be normal
subgroups of G. Note that P ∩Q = {e}, because any element in the intersection of P and Q would
have order dividing both the distinct primes p and q. But then we have an isomorphism

PQ ∼= P ×Q (134)

(you proved this in Math 113, and let us recall the argument: the function P×Q→ PQ, (x, y) 7→ xy
is injective because P∩Q = {e}. It is surjective by definition, and the fact that it is a homomorphism
follows from xy = yx for all x ∈ P, y ∈ Q, which in turn is due to the commutator xyx−1y−1 lying
in P ∩ Q = {e}. The last statement uses the fact that P and Q are both normal). Since |P | = p
and |Q| = q, then P ∼= Z/pZ and Q ∼= Z/qZ, while |PQ| = pq ⇒ PQ = G. Thus (134) ⇒ (133).

Note that Proposition 30 fails if p|q − 1. For instance, D6
∼= S3 is a nonabelian group of order 6.

10.2

While it doesn’t use the Sylow theorems, the following classification result is also very important.

Proposition 31. If p is prime, then any group of order p2 is isomorphic to either

Z/p2Z or Z/pZ× Z/pZ (135)

One of the key elements in the proof of Proposition 31 is the following.

Lemma 15. If G is a non-trivial finite p-group for some prime p, then Z(G) is non-trivial.

51



Proof. The class equation (50) reads

|G| = |Z(G)|+
∑

conjugacy classes g̃ of cardinality >1

|g̃|

However, since |G| = pn with n > 0 and the cardinality of any conjugacy class divides |G| (due to
formula (52)), we conclude that |Z(G)| is a multiple of p. Therefore, Z(G) must be non-trivial.

Proof. of Proposition 31: Let G be a group of order p2. Because its center Z(G) is non-trivial by
Lemma 15, the center must have order either p2 or p. In the former case, G must be abelian, so
Proposition 18 implies that G must be isomorphic to one of the two options in (135). In the latter
case, consider some element g ∈ G− Z(G) and let H = CG(g). We claim that

Z(G) ⊊ H ⊊ G

which is a contradiction because the number |H| would have to be simultaneously a proper multiple
of p = |Z(G)| and a proper divisor of p2 = |G|. The first ⊊ above is due to the fact that g ∈
H − Z(G), while the second ⊊ is due to the fact that H = G would imply g ∈ Z(G).

10.3

Combining the ideas of Propositions 30 and 31 gives us the following.

Proposition 32. If p and q are distinct primes such that p ∤ q − 1 and q ∤ p2 − 1, any group of
order p2q is isomorphic to either

Z/p2Z× Z/qZ or Z/pZ× Z/pZ× Z/qZ

Proof. As in the proof of Proposition 30, there exists a unique Sylow p-subgroup P and a unique
Sylow q-subgroup Q. These subgroups must be normal by Sylow’s third theorem and the assump-
tions p ∤ q − 1 and q ∤ p2 − 1, and their intersection is trivial. Therefore, (134) holds for the same
reason as in the proof of Proposition 30, and the proof is completed by the classification of groups
of order p2 in Proposition 31.

However, even when the non-divisibility assumptions in Propositions 30 and 32 fail, we can still use
the Sylow theorems to deduce important information about groups. For example, you proved the
following result by elementary means in Math 113, but using the Sylow theorems is much faster.

Proposition 33. Any group of order 12 is isomorphic to either

Z/4Z× Z/3Z or Z/2Z× Z/2Z× Z/3Z or A4 or D12 (136)

or the dicylic group that we will define in the course of the proof.
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Proof. Assume |G| = 12 and let us consider the number n3 of Sylow 3-subgroups. By Sylow’s third
Theorem 10, we have n3|4 and n3 ≡ 1 mod 3. Thus, we can have either n3 = 1 or n3 = 4. In the
case n3 = 4, we have four Sylow 3-groups, which we will denote by P1, P2, P3, P4. Since they have
order 3, these subgroups can only pairwise intersect in the identity element, so this means that our
group contains at least 2× 4 = 8 elements of order 3. Consider the action

G↷
{
P1, P2, P3, P4

}
, g · Pi = gPig

−1

which induces a homomorphism f : G → S4. Sylow’s third Theorem 10 implies that 4 = n3 =
[G : NG(Pi)], hence NG(Pi) = Pi for all i. Thus, the kernel of f must be contained in Pi for all
i. As we explained in the preceding paragraph, we have Pi ∩ Pj = {e} for all i ̸= j, so the kernel
of f is trivial. Therefore, G is isomorphic to a subgroup of S4. However, recall that G contains at
least 8 elements of order 3. Inside the symmetric group S4, the only elements of order 3 are the
cycles of length 3, which are all contained in the alternating group A4. Therefore, the subgroup
|Im f ∩ A4| of A4 has order at least 8. However, since the order of this subgroup would have to
divide 12 = |A4|, the only option is Im f = A4, which implies that G ∼= A4.

Let us now consider the case n3 = 1, i.e. there exists a single Sylow 3-subgroup of G, hence this
subgroup must be normal by Sylow’s second Theorem 9. We therefore obtain a short exact sequence

0→ Z/3Z→ G
π−→ L→ 0

where L is a group of order 4. However, let P be a Sylow 2-subgroup of G. Since its intersection
with Z/3Z consists of just the identity (otherwise P would contain a subgroup of order 3, which is
implossible for a group of order 4), then π induces an isomorphism π′ : P ∼= L of groups of order 4.
The inverse of π′ precisely provides a splitting to π, and so Proposition 10 implies that

G ∼= Z/3Z ⋊ L

for some action L ↷ Z/3Z by automorphisms. If this action is trivial, then the two possibilities
L ∼= Z/4Z and L ∼= Z/2Z × Z/2Z give us the first two options in (136). On the other hand, we
need to classify the non-trivial actions of L by automorphisms on Z/3Z. Since the only non-trivial
automorphism of Z/3Z is Φ(k) = (2k mod 3), then up to isomorphism we have two options

Z/2Z× Z/2Z ↷ Z/3Z, (a, b) mod 2 acts by Φa ⇒ G ∼= D12

Z/4Z ↷ Z/3Z, a mod 4 acts by Φa ⇒ G = Dic12

The latter equality is the definition of the dicylic group Dic12. In the first equation above, I’m
claiming that the dihedral group Z/6Z⋊Z/2Z is also isomorphic to Z/3Z⋊ (Z/2Z×Z/2Z) because
the action of the last factor of Z/2Z on Z/3Z is trivial. This is a general fact about actions by
automorphisms, which we leave for you to check: for any action L ↷ K by automorphisms and
any group H, there is an isomorphism of semi-direct products (K ×H)⋊L ∼= K ⋊ (L×H), where
in the left-hand side the action on H is trivial and in the right-hand side the action of H is trivial.

10.4

As shown in Theorem 6, the alternating group A5 is a simple group of order 5!
2 = 60. In the next

result, we will use the Sylow theorems to show that it is the only group of this kind.
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Proposition 34. If G is a simple group of order 60, then G ∼= A5.

One interesting consequence of Proposition 34 is that A5 is isomorphic to the icosahedral group I,
i.e. the group of rotations of three dimensional space which preserve a regular icosahedron 1.

Indeed, geometrically describing the rotations in question (which we will not do) allows us to classify
the conjugacy classes of I. The answer reveals that the class equation (50) for I is

60 = 1 + 12 + 12 + 15 + 20

If I had a proper normal subgroup H, then by normality H would need to be a disjoint union of
conjugacy classes (so |H| = 1+ a proper subset of the numbers 12, 12, 15, 20), while by being a
subgroup |H| would have to divide 60. It is easy to see that this is numerically impossible, so I is
a simple group. But then Proposition 34 implies that I ∼= A5.

Proof. of Proposition 34: Assume that G has a subgroup H of index n ∈ {2, 3, 4, 5}. The left action

G↷
{
left H-cosets

}
is transitive, so it induces a non-trivial homomorphism f : G → Sn. Since G is simple, it has
no proper normal subgroups, and therefore f must be injective. This is clearly impossible for
n ∈ {2, 3, 4} for cardinality reasons, while for n = 5 it implies that G is isomorphic to a subgroup
of index 2 in Sn. However any subgroup of index 2 is normal, and the only normal subgroup of S5
is A5 (otherwise we would extend the normal subgroup in question to a composition series of S5
which is non-equivalent to 1 ◁ A5 ◁ S5, which would contradict the Jordan-Hölder Theorem 7).

We may therefore assume that all subgroups of G have index ≥ 6, i.e. have order ≤ 10. However,
consider the number n2 of Sylow 2-subgroups. By Sylow’s third Theorem 10, this number divides

1Source of figure https://commons.wikimedia.org/w/index.php?curid=18278544
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15 and is equal to the index of a subgroup of G, so the only option is n2 = 15. We therefore have
distinct Sylow 2-subgroups P1, . . . , P15 of order 4 (hence abelian) so let us study their intersections.

� If Pi ∩ Pj ⊋ {e} for some i ̸= j, then choose an element e ̸= g ∈ Pi ∩ Pj . Since Pi and Pj are
abelian, we have Pi, Pj ≤ CG(g). However, the order of the subgroup CG(g) would have to be ≥ 6
(because it contains Pi ∪ Pj as a subset), a multiple of 4 (because it contains Pi as a subgroup),
a divisor of 60 (because it is a subgroup of G) and ≤ 10 (by the assumption at the beginning of
the paragraph above). This is clearly impossible for numerical reasons.

� If Pi ∩ Pj = {e} for all i ̸= j, then P1 ∪ · · · ∪ P15 contains 1 + 3 × 15 = 46 elements, all
having order 1,2 and 4. However, by Sylow’s third Theorem 10, the number n5 is the index of
a subgroup of G, and therefore n5 ≥ 6 by the assumption at the beginning of the paragraph
above. We therefore have at least 6 Sylow 5-subgroups, all of which must be isomorphic to
Z/5Z and which cannot pairwise intersect except in the identity (indeed, show that in any group,
different subgroups isomorphic to Z/pZ and Z/p′Z for any prime numbers p, p′ intersect only in
the identity element). Therefore, G contains at least 4 × 6 = 24 elements of order 5, and since
46 + 24 > 60, we counted more elements than the group G can admit.
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Lecture 11
11.1

Formula (107) shows that any finite abelian group is a direct product of abelian p-groups. To make
such a result hold in the non-abelian setting, we need to recall the nilpotent groups of Definition
25. With this in mind, the main result of this lecture is the following.

Theorem 11. A finite group G is nilpotent if and only if it can be written as

G ∼= P1 × · · · × Pk (137)

for distinct primes p1, . . . , pk, where each Pi is a finite pi-group.

Note that because each Pi is normal in the right-hand side of (137), we conclude that Pi would
correspond to the unique Sylow pi-subgroup of G. In fact, the proof of Theorem 11 shows that a
finite group is nilpotent if and only if all of its Sylow subgroups are normal. Before we set up the
proof of Theorem 11, we need to give an alternative characterization of nilpotent groups.

Proposition 35. A group G is nilpotent if and only if it has a central series

1 = G0 ◁ G1 ◁ · · · ◁ Gk−1 ◁ Gk = G (138)

i.e. one in which every Gi−1 is a normal subgroup of G (so not just of Gi), and every Gi/Gi−1 is
contained in the center of G/Gi−1.

Proof. The condition that Gi/Gi−1 ≤ Z(G/Gi−1) is equivalent to requiring

[Gi, G] ≤ Gi−1

for all i ∈ {1, . . . , k}. If G is nilpotent, once we remove all duplicates from the series (126), we will
obtain the required series (138). Conversely, if we have a central series (138), it is straightforward,
and left as an exercise to you to prove by induction on i that

G{i} ≤ Gk−i

Therefore we will have G{k} = 1, which means that G is nilpotent.

11.2

The characterization of nilpotent groups in Proposition 35 is more robust that the original definition.
In particular, it makes it quite straightforward to prove the following analogues of Propositions 24,
25 and 26.

Proposition 36. Any subgroup of a nilpotent group is nilpotent.

Proposition 37. Any quotient of a nilpotent group is nilpotent.
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Proposition 38. Suppose we have a short exact sequence of groups

1→ K → G
π−→ L→ 1

with K ≤ Z(G) and L nilpotent. Then G is nilpotent.

The proofs of Propositions 36 and 37 are very similar to the analogous results for solvable groups,
so we will leave the details as an exercise to you. We will present the details behind the proof of
Proposition 38 because of the extra assumption that K ≤ Z(G), which was not present in the case
of solvable groups.

Proof. of Proposition 38: Consider a central series

1 = L0 ◁ L1 ◁ · · · ◁ Lk−1 ◁ Lk = L

in which every Li/Li−1 is contained in the center of L/Li−1. Then let us consider

Gi+1 = π−1(Li)

for all i ≥ 0. Note that G1 = K. We claim that

1 = G0 ◁ G1 ◁ · · · ◁ Gk ◁ Gk+1 = G

is the required central series of G. The fact that each Gi+1 is normal in G follows by the corre-
spondence theorem from the fact that each Li is normal in L. Meanwhile, the property

[Gi+1, G] ≤ Gi

follows immediately from [Li, L] ≤ Li−1, for all i ≥ 1 (please check this). Finally, the fact that

[G1, G] = 1

follows from the fact that G1 = K is contained in the center of G.

11.3

Let us show that the direct product of nilpotent groups is nilpotent by using the original Definition
25. Indeed, we leave it to you to show by induction on i that

(G×G′){i} ∼= G{i} ×G′{i}

The isomorphism above for large enough i shows that

if G and G′ are nilpotent, then G×G′ is nilpotent (139)

Proposition 39. For any prime number p, any finite p-group is nilpotent.
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Proof. We will argue by induction on the order ofG. As shown in Lemma 15, |Z(G)| > 1. Therefore,
Proposition 37 implies that G/Z(G) is a p-group of strictly smaller order than G. By the induction
hypothesis, G/Z(G) is therefore nilpotent. However, G is (tautologically) an extension of this
nilpotent subgroup by the center Z(G), so Proposition 38 implies that G is nilpotent.

Since we already showed that the direct product of nilpotent groups is nilpotent, Proposition 39
establishes the fact that any group as in the right-hand side of (137) is nilpotent. Therefore, to
complete the proof of Theorem 11, we must show that any finite nilpotent group breaks up as the
direct product of its Sylow p-subgroups. This will be the subject of the subsequent subsections.

11.4

The last technical property of nilpotent groups concerns the behavior of normalizers of subgroups.

Proposition 40. Any nilpotent group G has the normalizer property, i.e. for all proper sub-
groups H < G we have

H ⊊ NG(H) (140)

In other words, “normalizers of subgroups strictly grow”.

Proof. Let G be a nilpotent group, and consider any subgroup H < G. Consider the normal series
(126), and any natural number i such that

G{i} ⊆ H

(such an i exists because G{k} = 1 for large enough k). However, we claim that

G{i−1} ⊆ NG(H)

because for any g ∈ G{i−1} and any h ∈ H we have

ghg−1h−1 ∈ G{i} ⊆ H ⇒ ghg−1 ∈ H

So if H failed the normalizer property, i.e. if H = NG(H), then the argument above would
recursively imply that G = G{0} ⊆ H, which contradicts the fact that H is a proper subgroup.

11.5

For finite groups, the converse of Proposition 40 also holds. Indeed, all that we will use in the
subsequent proof of Theorem 11 is that if a finite group G satisfies the normalizer property (140)
for all proper subgroups H < G, then G is the direct product of its Sylow subgroups (and hence
nilpotent by (139) and Proposition 39).
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Proof. of Theorem 11: The “if” implication follows from (139) and Proposition 39. To prove the
“only if” implication, take a finite nilpotent group G and let p1, . . . , pk be the distinct prime divisors
of |G|. Let

P1, . . . , Pk

denote Sylow subgroups of G corresponding to the primes p1, . . . , pk. For each i ∈ {1, . . . , k}, let

Hi = NG(Pi) (141)

If Hi = G for all i, then each Pi is normal, and thus the unique Sylow pi-subgroup by Theorem 9.
If this holds, then we claim that the function

P1 × · · · × Pk
τ−→ G, (g1, . . . , gk) 7→ g1 . . . gk

is an isomorphism. This follows from the points below

� τ is a homomorphism: for all i ̸= j, any gi ∈ Pi commutes with any gj ∈ Pj . To this end, note
that the normality of Pi and Pj implies that the commutator gigjg

−1
i g−1

j lies in both Pi and Pj .
However, any element in the intersection Pi∩Pj would need to have order dividing both a power
of pi and a power of pj , so the order would have to be 1.

� τ is injective: if g1 . . . gk = g′1 . . . g
′
k for various gi, g

′
i ∈ Pi, then the previous bullet implies that

(g′1g
−1
1 ) . . . (g′kg

−1
k ) = e ⇒ (g′1g

−1
1 ) . . . (g′k−1g

−1
k−1)︸ ︷︷ ︸

x

= (g′kg
−1
k )−1︸ ︷︷ ︸
y

The order of the element denoted by x above divides a power of p1 . . . pk−1, while the order of
the element denoted by y divides a power of pk. Since x = y, the only possibility is that these
elements are the identity, so g′k = gk. Analogously, one proves that g′k−1 = gk−1, . . . , g

′
1 = g1.

� The domain and target of τ have the same order: this is because the order of a Sylow p-subgroup
is, by definition, the maximal power of p which divides the order of the group.

Having proved the Theorem under the hypothesis that the subgroups Hi of (141) are all equal to
G, let us now assume for the purpose of contradiction that one of these Hi’s is a proper subgroup
of G. If indeed Hi < G for some i ∈ {1, . . . , k}, then the normalizer property (140) implies that
there exists g ∈ NG(Hi)−Hi. Then we have

gPig
−1 ⊆ gHig

−1 = Hi

so we conclude that both Pi and gPig
−1 are Sylow pi-subgroup of Hi. By Sylow’s second Theorem

9, there must exist some h ∈ Hi such that

gPig
−1 = hPih

−1 ⇒ (h−1g)Pi = Pi(h
−1g)

which implies that h−1g ∈ Hi. This contradicts the fact that g ∈ NG(Hi)−Hi.
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Lecture 12
12.1

We will now develop what is in a sense one of the most general (and fundamental) class of groups
out there. Fix a set S, and define a word in S to be any sequence

s±1
1 s±1

2 . . . s±1
k (142)

for various s1, . . . , sk ∈ S, where we write s+1 = s and think of s−1 as a formal symbol, for any
s ∈ S. A word is called reduced if it does not contain the length 2 sequences ss−1 or s−1s, ∀s ∈ S.

Definition 26. The free group FS on S is the set of reduced words, made into a group with

� identity given by the empty word

� the inverse of (142) given by s∓1
k . . . s∓1

2 s∓1
1 .

� the product of two words given by concatenation, followed by removing all sequences ss−1 and
s−1s (for various s ∈ S) in order to make the result into a reduced word.

We leave it to you to show that the group axioms in FS are satisfied. Any function f : S → S′

induces a homomorphism (which we will abusively also call) f : FS → FS′ , defined by the formula

s±1
1 . . . s±1

k ⇝ f(s1)
±1 . . . f(sk)

±1

for all words (142).

Lemma 16. For any set S and any group G, there exists a one-to-one correspondence

ΨS,G :
{
functions S → G

}
↔
{
homomorphisms FS → G

}
(143)

which is functorial in the sense that the square{
functions S → G

}
ΨS,G−−−−→

{
homomorphisms FS → G

}
y y{

functions S′ → G′
} ΨS′,G′
−−−−→

{
homomorphisms FS′ → G′

} (144)

commutes for all functions f : S′ → S and all homomorphisms g : G → G′ (the vertical maps are
given by composition with f and g, as appropriate).

Proof. The content of (143) is simply that any function α : S → G can be uniquely extended to a
homomorphism β : FS → G. However, this is simply a consequence of the fact that the axioms of
a homomorphism force us to set

β
(
s±1
1 . . . s±1

k

)
= α(s1)

±1 . . . α(sk)
±1

for all words (142). Functoriality is really easy to see, so please think about it.
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12.2

We have F∅ = 1 and F{x} = {xn|n ∈ Z} ∼= Z. However, as soon as the set S has at least two
elements, the free group FS is a quite big and complicated group. Moreover, the following result
shows that different sets S yield non-isomorphic free groups FS , so this construction is quite rich.

Theorem 12. There exists an isomorphism FS
∼=↔ FT if and only if there exists a bijection S ↔ T .

Before we prove the Theorem above, let us introduce a closely related notion to that of free groups.
Recall the derived subgroup (124). For any set S, the group

F ab
S = FS

/
[FS , FS ]

is called the free abelian group on S.

Proposition 41. For any set S, we have an isomorphism

F ab
S
∼= ZS =

⊕
s∈S

Z · s

In particular, if |S| = r, then F ab
S
∼= Zr.

Proof. Consider the functions

ZS → F ab
S ,

∑
s∈S

ns · s 7→
∏
s∈S

sns (145)

for all collections {ns ∈ Z}s∈S , such that all but finitely many of the ns are zero (the fact that F ab
S

is abelian means that it does not matter in which order we take the product in the right-hand side
of (145)) and

F ab
S → ZS , word (142) 7→

k∑
i=1

±si (146)

It is easy to see that these functions are mutually inverse. The fact that they are homomorphisms
is a straightforward consequence (which we leave as an exercise to you) of the fact that in F ab

S

the word (142) is equal to any of its permutations. Thus, the freedom to arbitrarily move symbols
around implies the formula

. . . sm . . . sn · · · = . . . sm+n . . .

in F ab
S , no mater what words one places instead of the “. . . ”.

12.3

We are now ready to prove Theorem 12. The proof that we are about to give below will also
establish the following closely related claim

there exists an isomorphism F ab
S

∼=↔ F ab
T if and only if there exists a bijection S ↔ T

61



Proof. of Theorem 12: The “if” statement is obvious, so let us prove the “only if” statement.
Assume that we have an isomorphism FS ∼= FT . Then it naturally descends to an isomorphism of
the corresponding quotients

ZS ∼= FS/[FS , FS ] ∼= FT /[FT , FT ] ∼= ZT

However, the isomorphism above sends multiples of 2 (i.e. formal sums
∑

s∈S ns · s with all the ns
being even) to multiples of 2. Since the subsets of multiples of 2 in either ZS and ZT are subgroups,
which you can easily prove, we can quotient by them and obtain an isomorphism

(Z/2Z)S ∼= (Z/2Z)T (147)

The group (Z/2Z)S consists of formal sums
∑

s∈S ns · s where finitely many of the ns can be
equal to 1 mod 2, but all the others are equal to 0 mod 2. Such formal sums are in one-to-one
correspondence with finite subsets of S (explicitly, to a formal sum

∑
s∈S ns · s we associate the

subset of those s ∈ S for which ns = 1 mod 2). Therefore, the isomorphism (147) gives a bijection{
finite subsets of S

}
↔
{
finite subsets of T

}
(148)

� If S and T have finite cardinality m and n (respectively) then the set of finite subsets of S and
T has cardinality 2m and 2n (respectively). The equality 2m = 2n implies m = n, hence there
exists a bijection between S and T .

� If one of S and T is finite and the other is infinite, then (148) cannot hold.

� If both S and T are infinite, then we invoke the fact that any infinite set is in bijection to its
set of finite subsets (proving this is not too hard, but it goes beyond the scope of our course).
Therefore, the bijection (148) implies that there exists a bijection between S and T .

12.4

If G is a group and X ⊆ G is a subset, then you learned in Math 113 that

K =
{
products of x±1

∣∣∣x ∈ X} (149)

is a subgroup of G, and that

H =
{
products of gx±1g−1

∣∣∣g ∈ G, x ∈ X} (150)

is a normal subgroup of G. We will write G/X instead of G/H.

Definition 27. Consider now a set R of words (142). The quotient group (defined as above)

⟨S|R⟩ := FS

/
R (151)

is called the group with generators S and relations R.
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For a group G, to find a generators-and-relations presentation of G means to find an isomorphism

G ∼= ⟨S|R⟩

for some sets S and R. If the set S is finite, then G is called finitely generated. If both S and
R are finite, then G is called finitely presented.

Example 4. For any set S, we have

F ab
S
∼= ⟨S|aba−1b−1, ∀a, b ∈ S⟩

12.5

Finite cyclic groups admit the presentation

Z/nZ ∼= ⟨x|xn⟩

Dihedral groups admit the presentation

D2n
∼= ⟨σ, τ |σn, τ2, (στ)2⟩

where σ is a rotation and τ is a reflection. Finally, symmetric groups admit the presentation

Sn ∼= ⟨σ1, . . . , σn−1|σ2i , (σiσj)2, (σiσi+1)
3⟩

where i goes over all indices, and j goes over all indices other than i − 1, i, i + 1. The fact that
these three groups admit generators-and-relations presentations is no coincidence, as the following
result shows.

Proposition 42. Any group G admits a generators-and-relations presentation.

Proof. Taking S = G and the identity in the left-hand side of (143) gives us a homomorphism

π : FG → G

Because any element of G is the image of the same-named generator, the homomorphism above
is surjective. Then we let H be the kernel of π, and the first isomorphism theorem implies that
G ∼= FG/H. It therefore remains to pick X = H in (149) and (150), and with these choices we have

⟨G|H⟩ ∼= G

The proof of Proposition 42 is very non-economical: we took every element of G to be a generator!
More useful generators-and-relations presentations of a group have relatively few generators, and
a “nice” set of a relations. Moreover, the same group often admits many different generators-and-
relations presentations, and it is in general difficult to decide if ⟨S|R⟩ is isomorphic to ⟨S′|R′⟩.
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12.6

For those of you who like more abstract mathematics, there exists an abstract definition of the
group ⟨S|R⟩. The following is a generalization of Lemma 16.

Lemma 17. For any set S, any set R of words (142) and any group G, there exists a one-to-one
correspondence

ΨS|R,G :
{
functions S

α−→ G s.t. α(r) = e,∀r ∈ R
}
↔
{
homomorphisms ⟨S|R⟩ → G

}
(152)

(we write α(s±1
1 . . . s±1

k ) = α(s1)
±1 . . . α(sk)

±1) which is functorial in the sense that the square{
functions S

α−→ G s.t. α(r) = e,∀r ∈ R
} ΨS,R|G−−−−→

{
homomorphisms ⟨S|R⟩ → G

}
y y{

functions S′ α−→ G′ s.t. α(r) = e,∀r ∈ R′
} ΨS′,R′|G′
−−−−−−→

{
homomorphisms ⟨S′|R′⟩ → G′

} (153)

commutes for all functions f : S′ → S which take any word in R′ to a concatenation of words in
R, and all homomorphisms g : G→ G′ (the vertical maps are given by composition with f and g).

Lemma 17 is proved just like Lemma 16, so we leave the details as an exercise to you. However,
we will explain the sense in which it provides an abstract definition of the group ⟨S|R⟩, which in
mathematics is called a universal property. For fixed S and R, assume that there exists a group
⟨S|R⟩ such that we have a functorial one-to-one correspondence (152), even though we do not need
to know the fact that it is constructed as in (151). Then this correspondence uniquely determines
⟨S|R⟩ up to isomorphism. To see this, assume that there existed two groups ⟨S|R⟩ and ⟨S|R⟩′ such
that we have functorial one-to-one correspondences{

functions S
α−→ G s.t. α(r) = e,∀r ∈ R

}
↔
{
homomorphisms ⟨S|R⟩ → G

}
{
functions S

α−→ G s.t. α(r) = e,∀r ∈ R
}
↔
{
homomorphisms ⟨S|R⟩′ → G

}
By composing the bijections above, we obtain a one-to-one correspondence

ΥG :
{
homomorphisms ⟨S|R⟩ → G

}
↔
{
homomorphisms ⟨S|R⟩′ → G

}
(154)

for any group G, which is functorial in the sense that the following diagram commutes{
homomorphisms ⟨S|R⟩ → G

}
ΥG−−−−→

{
homomorphisms ⟨S|R⟩′ → G

}
y y{

homomorphisms ⟨S|R⟩ → G′
}

ΥG′−−−−→
{
homomorphisms ⟨S|R⟩′ → G′

} (155)

for all homomorphisms g : G → G′ (the vertical arrows are given by composition with g). If we
take G = ⟨S|R⟩ in (154), then the identity in the left-hand side yields a homomorphism

⟨S|R⟩′ β′
−→ ⟨S|R⟩
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in the right-hand side, while if we take G = ⟨S|R⟩′ in (154), then the identity in the right-hand
side yields a homomorphism

⟨S|R⟩ β−→ ⟨S|R⟩′

in the left-hand side. If we consider the vertical maps in (155) to be composition with G = ⟨S|R⟩ β−→
⟨S|R⟩′ = G′, the commutativity of the square applied to the identity function ⟨S|R⟩ → ⟨S|R⟩ in
the top left corner implies the formula β ◦ β′ = Id in the bottom right corner.

Similarly, if we consider the vertical maps in (155) to be composition with G = ⟨S|R⟩′ β′
−→ ⟨S|R⟩ =

G′, the commutativity of the square applied to the identity function ⟨S|R⟩′ → ⟨S|R⟩′ in the top
right corner implies the formula β′ ◦ β = Id in the bottom left corner. We have thus shown that β
and β′ provide mutually inverse functions ⟨S|R⟩ ↔ ⟨S|R⟩′, hence ⟨S|R⟩ ∼= ⟨S|R⟩′.
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Lecture 13
13.1

When we say that a group G acts on a set X, we mean that to every g ∈ G we associate a function
Φg : X → X with various properties. When X has additional structure, we typically require the
functions Φg to respect this additional structure: for example, in Definition 13, we saw that if
X is a group, then we typically require the functions Φg to be themselves homomorphisms. The
starting point of representation theory is to deal with the case when X is a vector space and
the functions Φg are linear transformations over some henceforth fixed field F.

Definition 28. Let V be a F-vector space. A representation

G↷ V

is an assignment
∀g ∈ G ⇝ a linear transformation Φg : V → V (156)

which satisfies properties (18), (19) and (20).

Recall from your previous linear algebra courses that linear transformations are those functions
Φ : V → V which respect the addition and scalar multiplication in V :

Φ(v + v′) = Φ(v) + Φ(v′) and Φ(cv) = cΦ(v)

for any v, v′ ∈ V and c ∈ F. An example of a representation is

D2n ↷ R2

by the usual rotations and reflections, which are indeed linear transformations of R2.

13.2

You probably recall from your previous linear algebra courses that by choosing a basis, any finite-
dimensional vector space can be made isomorphic to

Fn =


v1...
vn

 for various v1, . . . , vn ∈ F

 (157)

Any linear transformation Φ : Fn → Fn can be written uniquely as

Φ(v) = Av

for some n × n matrix A = (aij)1≤i,j≤n, where v represents a n × 1 column vector as in (157). In
this case, a representation

G↷ Fn

boils down to an assignment

∀g ∈ G ⇝ a n× n matrix Ag

such that:
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� Ae is the n× n identity matrix

� Ag−1 = A−1
g , for all g ∈ G

� Agg′ = AgAg′ , for all g, g
′ ∈ G

With this in mind, it becomes clear that representation theory is the study of n× n matrices, and
how their products replicate various group structures. In the abstract language of group theory, a
representation G↷ Fn is the same as a homomorphism

G→ GL(n,F)

where in the right-hand side we have the general linear group consisting of invertible n × n
matrices with coefficients in F, with the product given by matrix multiplication.

13.3

The following notions should by now seem natural and predictable.

Definition 29. Given representations G ↷ V and G ↷ W (determined by collections {Φg : V →
V }g∈G and {Ψg :W →W}g∈G, respectively) a G-intertwiner is a linear transformation

f : V −→W

such that the following diagram commutes

V
f−−−−→ W

Φg

y yΨg

V
f−−−−→ W

for all g ∈ G. If we write Φg(v) = g · v and Ψg(w) = g · w for all v ∈ V and w ∈ W , then the
property of being a G-intertwiner is equivalent to

f(g · v) = g · f(v)

for all v ∈ V and all g ∈ G. If a G-intertwiner is moreover bijective, then we call it an isomor-
phism (of representations of G) and indicate this as

V ∼=W

Recall that a subset of a vector space is called a subspace if and only if it is preserved under addition
of vectors and scalar multiplication. If we have a representation G ↷ V , then a subspace W ⊆ V
is called a subrepresentation if

Φg(W ) ⊆W

for all g ∈ G. Moreover, in this case there is an induced quotient representation

G↷ V/W
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13.4

One of the most fundamental notions in representation theory is the following.

Definition 30. A representation G ↷ V is called irreducible if it doesn’t have any proper sub-
representations (i.e. no subrepresentations other than 0 or V ).

One of the main tools in representation theory is the following result, known as Schur’s lemma.

Lemma 18. Suppose we have a G-intertwiner f : V →W between two representations of G, which
is not identically 0. If V is irreducible, then f is injective. If W is irreducible, then f is surjective.

Proof. The Lemma is a quick consequence of the straightforward fact (whose proof we leave to
you) that for any G-intertwiner f : V → W , the kernel f−1(0) is a subrepresentation of V and
the image of f is a subrepresentation of W . But if V is irreducible, this means that the kernel is
either 0 (which implies that f is injective) or the kernel is the whole of V (which implies that f
is identically 0). Similarly, if W is irreducible, then the image is either 0 (which implies that f is
identically 0) or that the image is the whole of W (which implies that f is surjective).

As an immediate corollary of Lemma 18, any non-zero intertwiner between two irreducible repre-
sentations must be an isomorphism.

13.5

We will henceforth specialize to F = C, i.e. consider representations which are vector spaces over
the field of complex numbers. In this case, we can upgrade Lemma 18 to the following result.

Proposition 43. For any irreducible representation G↷ Cn, the only intertwiners

f : Cn → Cn

(the G actions in the domain and codomain of f are the same) are scalar multiples of the identity.

Proof. Since we are working over the complex numbers, any linear transformation f : Cn → Cn
has an eigenvector, i.e. there exists some 0 ̸= v ∈ Cn and some c ∈ C such that

f(v) = cv

Then the function f − c · Id is still an intertwiner (check this) but it cannot be injective anymore
since it has v in its kernel. Then Schur’s Lemma 18 implies that f − c · Id is identically 0.

Since any n-dimensional representation V over the field of complex numbers is isomorphic to Cn
(simply by choosing a basis of V ) then Proposition 43 also applies to intertwiners f : V → V . In
particular, this shows that if two finite-dimensional representations of G over the complex numbers
are isomorphic, then the isomorphism between them is unique up to scalar multiple. Indeed, if we
have any two isomorphisms

f1 : V →W and f2 : V →W

then f−1
1 ◦ f2 is an isomorphism V → V . Therefore, Proposition 43 implies that there exists c ∈ C

such that f−1
1 ◦ f2 = c · Id, which in turn implies f2 = c · f1.

68



13.6

If we have two representations G↷ V and G↷W , we can form the direct sum

V ⊕W =
{
(v, w)

∣∣∣v ∈ V,w ∈W}
and make it into a representation of G via g ·(v, w) = (g ·v, g ·w). In the language of Subsection 13.2,
the matrices Ag that describe the representation V ⊕W are block diagonal, with diagonal blocks
given by the matrices that describe the representations V and W , respectively. If you will take
Math 314, then you will learn the following very important result, known as Maschke’s theorem.

Theorem 13. Any finite dimensional representation of a finite group G over the field of complex
numbers is isomorphic to a direct sum of irreducible representations.

Let us illustrate Theorem 13 with the permutation representation Z/2Z ↷ C2, which is given in
matrix form by

0 mod 2 7→ A0 =

(
1 0
0 1

)
and 1 mod 2 7→ A1 =

(
0 1
1 0

)
The two coordinate subspaces of C2 are not subrepresentations, because they are not preserved by
the matrix A1. However, the two one-dimensional subspaces

V1 =
{
(c, c)

∣∣∣c ∈ C
}

and V2 =
{
(c,−c)

∣∣∣c ∈ C
}

are subrepresentations. Because they are one-dimensional, they do not have any proper subspaces,
so they are automatically irreducible. Therefore, Maschke’s theorem in this case states that

C2 ∼= V1 ⊕ V2

is the decomposition of the representation Z/2Z ↷ C2 into irreducible representations.

13.7

As a consequence of Theorem 13, any finite dimensional representation G ↷ V over the field of
complex numbers can be written as

V ∼= V ⊕n1
1 ⊕ · · · ⊕ V ⊕nk

k (158)

where V1, . . . , Vk are non-isomorphic irreducible representations of G, and n1, . . . , nk are some non-
negative integers known as multiplicities. We claim that the multiplicities are actually completely
determined by the representation V . To see this, consider any G-intertwiner

f : V ⊕n1
1 ⊕ · · · ⊕ V ⊕nk

k −→ V
⊕n′

1
1 ⊕ · · · ⊕ V ⊕n′

k
k

for various n1, . . . , nk, n
′
1, . . . , n

′
k ≥ 0, and let us ask when such an f can be an isomorphism. Lemma

18 and Proposition 43 imply that the G-intertwiner acts block diagonally, i.e.

f(. . . , vi1, . . . , vini , . . . ) = (. . . , v′i1, . . . , v
′
in′

i
, . . . )

69



(above, via and v′ia denote general vectors in the a-th direct summand of Vi and V
′
i , respectively)

where for all i ∈ {1, . . . , k} and b ∈ {1, . . . , n′i}, we have

v′ib =

ni∑
a=1

γ
(i)
ab via

for some complex numbers γ
(i)
ab . It is then not hard to believe that such a G-intertwiner f can be an

isomorphism only if ni = n′i for all i ∈ {1, . . . , k} (this is a slightly fancier version of the statement
that a n′×n matrix can be invertible only if n = n′), which implies that the numbers n1, . . . , nk in
(158) are completely determined by V . In Math 314, you will learn how to use character theory in
order to effectively compute these multiplicities for all finite dimensional representation of a finite
group.
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Lecture 14
14.1

Category theory provides a unifying language for many of the objects we discussed this semester.
We will now give a brief introduction to the basics of this language.

Definition 31. A (small) category C consists of the following data

� a set Ob(C) called the objects, and

� for any X,Y ∈ Ob(C) a set MorC(X,Y ) called the morphisms, together with

� an operation called composition

MorC(Y, Z)×MorC(X,Y )→ MorC(X,Z), (f, g) 7→ f ◦ g

for all X,Y, Z ∈ Ob(C).

One typically writes f : X → Y instead of f ∈ MorC(X,Y ). The composition of morphisms is
required to satisfy two axioms: firstly, there should exist an identity morphism

IdX : X → X

for all X ∈ Ob(C), such that

IdY ◦ f = f ◦ IdX = f, ∀f : X → Y

Secondly, composition of morphisms should be associative, in the sense that

f ◦ (g ◦ h) = (f ◦ g) ◦ h

for any h : X → Y , g : Y → Z, f : Z → T .

14.2

One typically draws a category C as a directed graph: the vertices are the elements of Ob(C) and
the arrows from vertex X to vertex Y are in one-to-one correspondence with the elements of the set
MorC(X,Y ). Note that there may be infinitely many vertices and arrows! Examples of categories
include:

� Set: objects are sets and morphisms are functions (note that this is not a small category, so one
has to slightly change the words “set” in the bullets of Definition 31)

� Gr: objects are groups and morphisms are homomorphisms (same comment about “set” as above)

� RepG: objects are representations of a fixed group G and morphisms are G-intertwiners
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There is a notion of inverse morphisms in a category C: we call f : X → Y and g : Y → X inverses
of each other (and write this as g = f−1) if

g ◦ f = IdX and f ◦ g = IdY

The invertible morphisms in the examples of categories in the three bullets above are the bijections,
the isomorphisms (of groups) and the isomorphisms of G-representations, respectively.

Proposition 44. There is a one-to-one correspondence between groups on one hand, and categories
with a single object where every morphism is invertible on the other hand.

Proof. The Proposition is almost obvious: if • is the single object of the category in question, then
G = Mor(•, •) has an identity element and an associative operation, and the assumption that every
element of G has an inverse precisely completes the group axioms.

14.3

The following notion is key to category theory.

Definition 32. A functor F : C → D between categories consists of

� a function F : Ob(C)→ Ob(D)

� an assignment
f : X → Y ⇝ F (f) : F (X)→ F (Y )

for all X,Y ∈ Ob(C), which sends identity to identity and respects composition of morphisms.

If we let •G denote the category that corresponds to a group G in Proposition 44, then to give a
functor •G → •G′ is the same thing as to give a group homomorphism G→ G′.

Another example of a functor between categories is

Gr
for−→ Set

which takes a group to the underlying set, and a homomorphism ϕ between groups to ϕ interpreted
as a function between the underlying sets. It is called the forgetful functor.

Example 5. The free group construction in Subsection 12.1 gives a functor

Set
free−−→ Gr

It sends a set S to the group FS, and a function s : S → T to the group homomorphism FS → FT
induced by sending the generators s±1 of the group FS to the generators f(s)±1 of the group FT .
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Definition 33. Functors F : D → C and G : C → D are called adjoint, if there exist bijections

ΨX,Y : MorC(F (X), Y )↔ MorD(X,G(Y ))

for any X ∈ Ob(D) and Y ∈ Ob(C). These bijections are required to be natural, in the sense that

MorC(F (X), Y )
ΨX,Y−−−−→ MorD(X,G(Y ))

g◦−◦F (f)

y yG(g)◦−◦f

MorC(F (X
′), Y ′)

ΨX′,Y ′
−−−−→ MorD(X

′, G(Y ′))

must commute for all morphisms f : X ′ → X in D and g : Y → Y ′ in C.

Lemma 16 is precisely the statement that (F = free) and (G = for) yield a pair of adjoint functors.

14.4

Definition 34. If f : X → Y and f ′ : X → Y ′ are morphisms in a category C, then we say that
their pushout is an object Z equipped with morphisms

g : Y → Z and g′ : Y ′ → Z

such that g ◦ f = g′ ◦ f ′, with the following universal property. For any object A and morphisms

h : Y → A and h′ : Y ′ → A

such that h ◦ f = h′ ◦ f ′, there exists a unique morphism

s : Z → A

such that
h = s ◦ g and h′ = s ◦ g′

More visually, the condition above states that there exists a unique dotted arrow such that all squares
and triangles in the diagram below commute

X Y ′

Y Z

A

f ′

f g′
h′

g

h

s

(159)

When a pushout exists, it is unique up to isomorphism (please prove this). We will now provide
two examples that we have already encountered in our course.
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Example 6. In the category Gr, let f : H ↪→ G be the inclusion of a normal subgroup H ⊴ G and
f ′ : H → 1 to be the trivial homomorphism. In this case, pushout is none other than the quotient
group g : G→ G/H. The universal property in this case can be summarized in words as

whenever we have a group homomorphism h : G→ A such that h(H) = 1,

there exists a unique homomorphism s : G/H → A such that h = s ◦ g (160)

or more visually, that there exists a unique dotted arrow which makes the diagram below commute

G G/H A
g

h

s

If H is not normal in G, then the pushout is G/N , where N is the smallest normal subgroup of G
that contains H (also known as the normal closure of H). So the pushout construction does not
distinguish between all subgroups (and in more general categories, pushouts might not even exist).

Example 7. In the category Set, any equivalence relation can be presented as a pushout. Specif-
ically, if we let R ⊆ X × X denote the set of pairs (x, x′) such that x ∼ x′, then we claim that
the pushout of the functions f : R → X, f(x, x′) = x and f ′ : R → X, f ′(x, x′) = x′ is the set of
equivalence classes Z = X/ ∼. Indeed, for any set A as in diagram (159) together with functions

g : X → A and g′ : X → A

such that g(x) = g′(x′) whenever x ∼ x′, then first of all we need to have g = g′ by reflexivity, and
second of all we can define

s : X/ ∼ → A

by setting s([x]) = g(x). Since g(x) = g(x′) whenever x ∼ x′, this definition is unambiguous.
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